Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Role of nanoparticles in alleviation of biotic and abiotic stress in crops: A review

DOI
https://doi.org/10.14719/pst.10000
Submitted
12 June 2025
Published
28-10-2025

Abstract

Difficulties such as drought, salt and high temperatures caused by environmental problems reduce worldwide crop yields and greatly prevent seeds from sprouting. Because of what they are made of nanoparticles (NPs) are getting a lot of attention as a method to boost plant growth in tough conditions. The review covers information on how various NPs are affected by abiotic conditions and in turn influence the process of seed germination and the early stages of plant growth. Metallic, carbon-based and biopolymer nanoparticles modulate water uptake, activate germination-related enzymes (e.g., amylase, protease) and enhance antioxidant defense (e.g., superoxide dismutase, catalase), thereby improving seed vigour under stress. This is done because these interactions save cellular balance, which results in less oxidative stress and greater resistance to outside problems. The study also investigates the ways NPs get into seed cells and what impacts they have on cellular organelles. Topics related to NPs like their toxicity, the possibility that they last in nature for a long time and the many regulations are mentioned too. It is highlighted that when it comes to using nanotechnology in agriculture, emphasis ought to be placed on making sure things are environmentally friendly and sustainable and that nanoparticles are properly adjusted to encourage seed germination under stressful conditions.

References

  1. 1. Khalid MF, Hussain S, Ahmad S, Ejaz S, Zakir I, Ali MA, et al. Impacts of abiotic stresses on growth and development of plants. In: Plant tolerance to environmental stress. CRC Press; 2019. p. 1–8.
  2. 2. Baby A, Nazeerudeen S, Ranganath S, Samuel RS. Toxicological impacts of nanoparticles. In: Emerging trends of nanotechnology in environment and sustainability: a review-based approach. 2018. p. 77–85. https://doi.org/10.1007/978-3-319-71327-4_10
  3. 3. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–74. https://doi.org/10.3762/bjnano.9.98
  4. 4. VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A molecular view of plant local adaptation: incorporating stress-response networks. Annu Rev Plant Biol. 2019;70(1):559–83. https://doi.org/10.1146/annurev-arplant-050718-100114
  5. 5. Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem. 2020;156:64–77. https://doi.org/10.1016/j.plaphy.2020.08.042
  6. 6. Singh A, Tiwari S, Pandey J, Lata C, Singh IK. Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol. 2021;337:57–70. https://doi.org/10.1016/j.jbiotec.2021.06.022
  7. 7. Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem. 2020;68(7):1935–47. https://doi.org/10.1021/acs.jafc.9b06615
  8. 8. Dietz KJ, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16(11):582–9.
  9. 9. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. 2017;322:2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061
  10. 10. Turgeon R. The puzzle of phloem pressure. Plant Physiol. 2010;154(2):578–81. https://doi.org/10.1104/pp.110.161679
  11. 11. Syu YY, Hung JH, Chen JC, Chuang HW. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem. 2014;83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010
  12. 12. Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, et al. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem. 2017;110:2–12. https://doi.org/10.1016/j.plaphy.2016.07.030
  13. 13. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol. 2012;46(15):8467–74. https://doi.org/10.1021/es3019397
  14. 14. Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H, et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. 2020;721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  15. 15. Fleischer A, O'Neill MA, Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 1999;121(3):829–38. https://doi.org/10.1104/pp.121.3.829
  16. 16. Hossain Z, Mustafa G, Sakata K, Komatsu S. Insights into the proteomic response of soybean towards Al₂O₃, ZnO and Ag nanoparticles stress. J Hazard Mater. 2016;304:291–305. https://doi.org/10.1016/j.jhazmat.2015.10.071
  17. 17. Eichert T, Kurtz A, Steiner U, Goldbach HE. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant. 2008;134(1):151–60. https://doi.org/10.1111/j.1399-3054.2008.01135.x
  18. 18. Sreenivasulu N, Wobus U. Seed-development programs: a systems biology–based comparison between dicots and monocots. Annu Rev Plant Biol. 2013;64(1):189–217. https://doi.org/10.1146/annurev-arplant-050312-120215
  19. 19. Tombuloglu H, Anıl I, Akhtar S, Turumtay H, Sabit H, Slimani Y, et al. Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Sci Hortic. 2020;265:109223. https://doi.org/10.1016/j.scienta.2020.109223
  20. 20. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, et al. Seed germination and vigor. Annu Rev Plant Biol. 2012;63(1):507–33. https://doi.org/10.1146/annurev-arplant-042811-105550
  21. 21. Achari GA, Kowshik M. Recent developments on nanotechnology in agriculture: plant mineral nutrition, health and interactions with soil microflora. Journal of Agricultural and Food Chemistry. 2018;66(33):8647–61. https://doi.org/10.1021/acs.jafc.8b00691
  22. 22. Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS. Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Materials Letters. 2019;235:164–7. https://doi.org/10.1016/j.matlet.2018.10.038
  23. 23. Avila-Arias H, Nies LF, Gray MB, Turco RF. Impacts of molybdenum-, nickel- and lithium-oxide nanomaterials on soil activity and microbial community structure. Science of the Total Environment. 2019;652:202–11. https://doi.org/10.1016/j.scitotenv.2018.10.189
  24. 24. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: a perspective analysis. Science of the Total Environment. 2018;630:1413–35. https://doi.org/10.1016/j.scitotenv.2018.02.313
  25. 25. Duncan E, Owens G. Metal oxide nanomaterials used to remediate heavy metal contaminated soils have strong effects on nutrient and trace element phytoavailability. Science of the Total Environment. 2019;678:430–7. https://doi.org/10.1016/j.scitotenv.2019.04.442
  26. 26. Bouguerra S, Gavina A, da Graça Rasteiro M, Rocha-Santos T, Ksibi M, Pereira R. Effects of cobalt oxide nanomaterial on plants and soil invertebrates at different levels of biological organization. Journal of Soils and Sediments. 2019;19:3018–34. https://doi.org/10.1007/s11368-019-02285-8
  27. 27. Bourdineaud JP, Štambuk A, Šrut M, Radić Brkanac S, Ivanković D, Lisjak D, et al. Gold and silver nanoparticles effects to the earthworm Eisenia fetida – the importance of tissue over soil concentrations. Drug and Chemical Toxicology. 2021;44(1):12–29. https://doi.org/10.1080/01480545.2019.1567757
  28. 28. Jaya Mugundha P, Lakshmanan A, Rajkishore SK, Raja K. Bioefficacy of Fe₂O₃ quantum dots on enhancing seed germination and seedling vigour in black gram (Vigna mungo). 2022.
  29. 29. Salam A, Afridi MS, Javed MA, Saleem A, Hafeez A, Khan AR, et al. Nano-priming against abiotic stress: a way forward towards sustainable agriculture. Sustainability. 2022;14(22):14880. https://doi.org/10.3390/su142214880
  30. 30. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One. 2012;7(11):e47674. https://doi.org/10.1371/journal.pone.0047674
  31. 31. Clément L, Hurel C, Marmier N. Toxicity of TiO₂ nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere. 2013;90(3):1083–90. https://doi.org/10.1016/j.chemosphere.2012.09.013
  32. 32. Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A. Impact of bulk and nanosized titanium dioxide (TiO₂) on wheat seed germination and seedling growth. Biological Trace Element Research. 2012;146:101–6. https://doi.org/10.1007/s12011-011-9222-7
  33. 33. Boykov IN, Shuford E, Zhang B. Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics. 2019;111(3):450–6. https://doi.org/10.1016/j.ygeno.2018.03.002
  34. 34. Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, et al. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment. 2018;645:1103–13. https://doi.org/10.1016/j.scitotenv.2018.07.211
  35. 35. Ahmed B, Khan MS, Musarrat J. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environmental Pollution. 2018;240:802–16. https://doi.org/10.1016/j.envpol.2018.05.015
  36. 36. Kibbey TC, Strevett KA. The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere. 2019;221:703–7. https://doi.org/10.1016/j.chemosphere.2019.01.091
  37. 37. Zaka M, Abbasi BH, Rahman LU, Shah A, Zia M. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnology. 2016;10(3):134–40. https://doi.org/10.1049/iet-nbt.2015.0039
  38. 38. Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution. 2007;150(2):243–50. https://doi.org/10.1016/j.envpol.2007.01.016
  39. 39. Feizi H, Kamali M, Jafari L, Moghaddam PR. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 2013;91(4):506–11. https://doi.org/10.1016/j.chemosphere.2012.12.012
  40. 40. Siddiqui MH, Al-Whaibi MH. Role of nano-SiO₂ in germination of tomato (Lycopersicum esculentum Mill). Saudi Journal of Biological Sciences. 2014;21(1):13–7. https://doi.org/10.1016/j.sjbs.2013.04.005
  41. 41. Divya K, Vijayan S, Nair SJ, Jisha MS. Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules. 2019;124:1053–9. https://doi.org/10.1016/j.ijbiomac.2018.11.185
  42. 42. Ananda S, Shobha G, Shashidhara KS, Mahadimane V. Nano-cuprous oxide enhances seed germination and seedling growth in Lycopersicum esculentum plants. Journal of Drug Delivery & Therapeutics. 2019;9(2). https://doi.org/10.22270/jddt.v9i2.2554
  43. 43. Marchiol L, Filippi A, Adamiano A, Degli Esposti L, Iafisco M, Mattiello A, et al. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): preliminary evidence. Agronomy. 2019;9(4):161. https://doi.org/10.3390/agronomy9040161
  44. 44. Ahmed B, Rizvi A, Zaidi A, Khan MS, Musarrat J. Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation and metallothionein production. RSC Advances. 2019;9(8):4210–25. https://doi.org/10.1039/C8RA09305A
  45. 45. Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR. Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2018;88:595–607. https://doi.org/10.1007/s40011-016-0796-x
  46. 46. Zaka M, Abbasi BH, Rahman LU, Shah A, Zia M. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnology. 2016;10(3):134–40. https://doi.org/10.1049/iet-nbt.2015.0039
  47. 47. El-Temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology. 2012;27(1):42–9. https://doi.org/10.1002/tox.20610
  48. 48. Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, et al. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 2012;35(6):905–27. https://doi.org/10.1080/01904167.2012.663443
  49. 49. Mustafa G, Komatsu S. Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. Journal of Proteome Research. 2016;15(12):4464–75. https://doi.org/10.1021/acs.jproteome.6b00572
  50. 50. Lu L, Huang M, Huang Y, Corvini PF, Ji R, Zhao L. Mn₃O₄ nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano. 2020;7(6):1692–703. https://doi.org/10.1039/D0EN00214C
  51. 51. Ye Y, Cota-Ruiz K, Hernández-Viezcas JA, Valdes C, Medina-Velo IA, Turley RS, et al. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering. 2020;8(3):1427–36. https://doi.org/10.1021/acssuschemeng.9b05615
  52. 52. Mozafari AA, Ghadakchi Asl A, Ghaderi N. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants. 2018;24:25–35. https://doi.org/10.1007/s12298-017-0488-x
  53. 53. Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. Fe₂O₃ nanoparticles induced biochemical responses and expression of genes involved in rosmarinic acid biosynthesis pathway in Moldavian balm under salinity stress. Physiologia Plantarum. 2020;169(4):555–70. https://doi.org/10.1111/ppl.13077
  54. 54. Maswada HF, Djanaguiraman M, Prasad PV. Seed treatment with nano-iron (III) oxide enhances germination, seedling growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science. 2018;204(6):577–87. https://doi.org/10.1111/jac.12280
  55. 55. El-Saadony MT, Saad AM, Najjar AA, Alzahrani SO, Alkhatib FM, Shafi ME, et al. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences. 2021;28(8):4461–71. https://doi.org/10.1016/j.sjbs.2021.04.043
  56. 56. Nair PM, Chung IM. Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Science of the Total Environment. 2017;575:187–98. https://doi.org/10.1016/j.scitotenv.2016.10.017
  57. 57. Seyed Saeid H. Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. Open Access Journal of Environmental and Soil Sciences. 2019;2(2):132. https://doi.org/10.32474/OAJESS.2019.02.000132
  58. 58. Sedghi M, Hadi M, Toluie SG. Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Annals of the West University of Timisoara Series Biology. 2013;16(2):73.
  59. 59. Tarafdar JC, Raliya R, Mahawar H, Rathore I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research. 2014;3(3):257–62. https://doi.org/10.1007/s40003-014-0113-y
  60. 60. Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research. 2013;2:48–57. https://doi.org/10.1007/s40003-012-0049-z
  61. 61. Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. https://open.icm.edu.pl/handle/123456789/10837
  62. 62. Wu H, Shabala L, Shabala S, Giraldo JP. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano. 2018;5(7):1567–83. https://doi.org/10.1039/C8EN00323H
  63. 63. Rossi L, Zhang W, Lombardini L, Ma X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution. 2016;219:28–36. https://doi.org/10.1016/j.envpol.2016.09.060
  64. 64. Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, et al. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety. 2020;192:110303. https://doi.org/10.1016/j.ecoenv.2020.110303
  65. 65. Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science. 2016;7:196. https://doi.org/10.3389/fpls.2016.00196
  66. 66. Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
  67. 67. Torabian S, Zahedi M, Khoshgoftar AH. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. Journal of Plant Nutrition. 2016;39(2):172–80. https://doi.org/10.1080/01904167.2015.1009107
  68. 68. Rossi L, Zhang W, Lombardini L, Ma X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution. 2016;219:28–36. https://doi.org/10.1016/j.envpol.2016.09.060
  69. 69. Nejatzadeh F. Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon. 2021;7(2).
  70. 70. Hojjat SS, Kamyab M. The effect of silver nanoparticle on fenugreek seed germination under salinity levels. Russian Agricultural Sciences. 2017;43:61–5. https://doi.org/10.3103/S1068367417010189
  71. 71. Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, et al. Assessment of the impacts of green synthesized silver nanoparticles on Maerua oblongifolia shoots under in vitro salt stress. Materials. 2022;15(14):4784. https://doi.org/10.3390/ma15144784
  72. 72. Ekhtiyari R, Moraghebi F. Effect of nanosilver particles on salinity tolerance of cumin (Cuminum cyminum L.). Journal of Plant Biotechnology. 2012;25:99–107.
  73. 73. Askary M, Talebi SM, Amini F, Bangan AD. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 2017;63(1). https://doi.org/10.6001/biologija.v63i1.3476
  74. 74. Al-Ashkar I, Al-Suhaibani N, Abdella K, Sallam M, Alotaibi M, Seleiman MF. Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants. 2021;10(5):931. https://doi.org/10.3390/plants10050931
  75. 75. Roy R, Núñez-Delgado A, Sultana S, Wang J, Battaglia ML, Sarker T, et al. Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management. 2021;295:113076. https://doi.org/10.1016/j.jenvman.2021.113076
  76. 76. Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, et al. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy. 2021;11(2):241. https://doi.org/10.3390/agronomy11020241
  77. 77. Sedghi M, Hadi M, Toluie SG. Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Annals of the West University of Timisoara Series Biology. 2013;16(2):73.
  78. 78. Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants. 2021;10(2):421. https://doi.org/10.3390/plants10020421
  79. 79. Turgeon R. The role of phloem loading reconsidered. Plant Physiology. 2010;152(4):1817–23. https://doi.org/10.1104/pp.110.153023
  80. 80. Rui Y. Nanoparticles alleviate heavy metals stress. 2021.
  81. 81. Tombuloglu H, Anıl I, Akhtar S, Turumtay H, Sabit H, Slimani Y, et al. Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Scientia Horticulturae. 2020;265:109223. https://doi.org/10.1016/j.scienta.2020.109223
  82. 82. Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Frontiers in Environmental Science. 2016;4:46. https://doi.org/10.3389/fenvs.2016.00046
  83. 83. Singh J, Lee BK. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management. 2016;170:88–96. https://doi.org/10.1016/j.jenvman.2016.01.015
  84. 84. Egendorf SP, Groffman P, Moore G, Cheng Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. International Journal of Phytoremediation. 2020;22(9):916–30. https://doi.org/10.1080/15226514.2020.1774501
  85. 85. Pang YL, Quek YY, Lim S, Shuit SH. Review on phytoremediation potential of floating aquatic plants for heavy metals: a promising approach. Sustainability. 2023;15(2):1290. https://doi.org/10.3390/su15021290
  86. 86. Kumar A, Dadhwal M, Mukherjee G, Srivastava A, Gupta S, Ahuja V. Phytoremediation: sustainable approach for heavy metal pollution. Scientifica. 2024;2024(1):3909400. https://doi.org/10.1155/2024/3909400
  87. 87. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry. 2015;96:189–98. https://doi.org/10.1016/j.plaphy.2015.07.026
  88. 88. De Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MA, et al. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Science of the Total Environment. 2019;693:133636. https://doi.org/10.1016/j.scitotenv.2019.133636
  89. 89. Sutulienė R, Ragelienė L, Samuolienė G, Brazaitytė A, Urbutis M, Miliauskienė J. The response of antioxidant system of drought-stressed green pea (Pisum sativum L.) affected by watering and foliar spray with silica nanoparticles. Horticulturae. 2021;8(1):35. https://doi.org/10.3389/fpls.2024.1484600
  90. 90. Kashif M, Sattar A, Ul-Allah S, Sher A, Ijaz M, Butt M, et al. Silicon alleviates arsenic toxicity in maize seedlings by regulating physiological and antioxidant defense mechanisms. Journal of Soil Science and Plant Nutrition. 2021;21(3):2032–40. https://doi.org/10.1007/s42729-021-00499-9

Downloads

Download data is not yet available.