Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Tracking nanonutrients in plants: A review of uptake, assimilation, translocation and analytical techniques

DOI
https://doi.org/10.14719/pst.10035
Submitted
13 June 2025
Published
12-08-2025 — Updated on 23-08-2025
Versions

Abstract

The development of nanotechnology in agriculture has fuelled the rise of nanonutrients as prospective agents to improve nutrient use efficiency, crop yield and environmental sustainability. In contrast to traditional fertilisers, nanonutrients offer targeted delivery, slow release and enhanced absorption due to their nanoscale size and distinctive physicochemical properties. This review critically assesses the existing knowledge on nano-nutrient uptake, assimilation and translocation in plant systems. It emphasises the intricate interactions between plant physiological pathways and nanomaterials, including entry modes through leaves and roots, transport mechanisms at the cellular level and their ultimate distribution within plant organs. Additionally, this article provides a detailed account of the methodological strategies employed to investigate these processes. These methods include elemental and isotopic tracing, spectroscopic and molecular analyses, imaging technologies, physiological and biochemical assays, as well as dye-based tracking systems. The combination of these methodologies has enhanced our ability to quantify, visualise and comprehend the fate of nanonutrients in planta. Synthesising recent breakthroughs and methodological updates, this review aims to establish a foundation for future studies that maximise nano-fertiliser design and ensure their safe and efficient deployment in sustainable agriculture.

References

  1. 1. Dimkpa CO, Singh U, Adisa IO, Bindraban PS, Elmer WH, Gardea–Torresdey JL, et al. Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy. 2018;8(9):158. https://doi.org/10.3390/agronomy8090158
  2. 2. Adisa IO, Rawat S, Pullagurala VLR, Dimkpa CO, Elmer WH, White JC, et al. Nutritional status of tomato (Solanum lycopersicum) fruit grown in Fusarium–infested soil: impact of cerium oxide nanoparticles. J Agric Food Chem. 2020;68(7):1986–97. https://doi.org/10.1021/acs.jafc.9b07138
  3. 3. Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné–Bosch S. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 2019;289:110270. https://doi.org/10.1016/j.plantsci.2019.110270
  4. 4. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS. Nano–fertilizers for balanced crop nutrition. Nanotechnol Food Agric. 2015:69–80. https://doi.org/10.1007/978-3-319-14024-8-4
  5. 5. Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131–9. https://doi.org/10.1016/j.scitotenv.2015.01.104
  6. 6. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 2019;24(14):2558. https://doi.org/10.3390/molecules24142558
  7. 7. Lv J, Christie P, Zhang S. Uptake, translocation and transformation of metal–based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano. 2019;6(1):41–59. https://doi.org/10.1039/c8en00808g
  8. 8. Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13(8):677–84. https://doi.org/10.1038/s41565-018-0131-1
  9. 9. Raliya R, Saharan V, Dimkpa C, Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem. 2017;66(26):6487–503. https://doi.org/10.1021/acs.jafc.7b02150
  10. 10. Wang P, Lombi E, Zhao F–J, Kopittke PM. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 2016;21(8):699–712. https://doi.org/10.1016/j.tplants.2016.04.005
  11. 11. Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci. 2016;4:20. https://doi.org/10.3389/fenvs.2016.00020
  12. 12. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol. 2017;8:1014. https://doi.org/10.3389/fmicb.2017.01014
  13. 13. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221–7. https://doi.org/10.1021/nn900887m
  14. 14. Servin A, Elmer W, Mukherjee A, De la Torre–Roche R, Hamdi H, White JC, et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res. 2015;17:92. https://doi.org/10.1007/s11051–015–2907–7
  15. 15. Raliya R, Nair R, Chavalmane S, Wang W–N, Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7(12):1584–94. https://doi.org/10.1039/C5MT00168D
  16. 16. Kumar Y, Tiwari KN, Singh T, Raliya R. Nanofertilizers and their role in sustainable agriculture. Ann Plant Soil Res. 2021;23(3):238-55. https://doi.org/10.47815/apsr.2021.10067.
  17. 17. Miralles P, Church TL, Harris AT. Toxicity, uptake and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol. 2012;46(17):9224–39. https://doi.org/10.1021/es301386x
  18. 18. Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano–biotechnology enabled protection and nutrition of plants. Biotechnol Adv. 2011;29(6):792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007
  19. 19. Burman U, Saini M, Kumar P. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem. 2013;95(4):605–12. https://doi.org/10.1080/02772248.2013.803630
  20. 20. Pérez–de–Luque A. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 2017;5:12. https://doi.org/10.3389/fenvs.2017.00012
  21. 21. García–Gómez C, Obrador A, González D, Babín M, Fernández MD. Comparative effect of ZnO NPs, ZnO bulk and ZnSO₄ in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ. 2017;589:11–24. https://doi.org/10.1016/j.scitotenv.2017.02.164
  22. 22. Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci. 2019;9(3):499. https://doi.org/10.3390/app9030499
  23. 23. Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, et al. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut. 2018;242:1518–26. https://doi.org/10.1016/j.envpol.2018.07.121
  24. 24. Gui X, Zhang Z, Liu S, Ma Y, Zhang P, He X, et al. Fate and phytotoxicity of CeO₂ nanoparticles on lettuce cultured in the potting soil environment. PLoS One. 2015;10(8):e0134261. https://doi.org/10.1371/journal.pone.0134261
  25. 25. Mansoor S, Kour N, Manhas S, Zahid S, Wani OA, Sharma V, et al. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere. 2021;271:129458. https://doi.org/10.1016/j.chemosphere.2020.129458
  26. 26. Pandey AC, Sanjay SS, Yadav RS. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci. 2010;5(6):488–97. https://doi.org/10.1080/17458081003671123
  27. 27. Ma X, Gurung A, Deng Y. Phytotoxicity and uptake of nanoscale zero–valent iron (nZVI) by two plant species. Sci Total Environ. 2013;443:844–9. https://doi.org/10.1016/j.scitotenv.2012.11.061
  28. 28. Jaberzadeh A, Moaveni P, Moghaddam HRT, Zahedi H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo. 2013;41(1):201–7. https://doi.org/10.15835/nbha4118853
  29. 29. Agrawal S, Rathore P. Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci. 2014;3(3):43–55.
  30. 30. Kopittke PM, Lombi E, Wang P, Schjoerring JK, Husted S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ Sci Nano. 2019;6(12):3513–24. https://doi.org/10.1039/c9en00265g
  31. 31. Madhan K, Kalimuthu R, Antony D, Chidambaram P, Sekar A, Solomon RV, et al. Eco–friendly nano colloids for enhanced black gram (Vigna mungo) seed viability: experimental and computational analysis. BMC Plant Biol. 2025;25(1):204. https://doi.org/10.1186/s12870–025–04201–6
  32. 32. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13(4):400–8. https://doi.org/10.1038/nmat3890
  33. 33. Zhao L, Peralta–Videa JR, Rico CM, Hernandez–Viezcas JA, Sun Y, Niu G, et al. CeO₂ and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem. 2014;62(13):2752–9. https://doi.org/10.1021/jf405409a
  34. 34. Easwaran C, Christopher SR, Ramasamy R, Solomon RV, Kumar M, Mohan P, et al. Design and characterization of a chitosan–based nanohybrid fertilizer: molecular insights and nutrient release kinetics. J Inorg Organomet Polym Mater. 2025. https://doi.org/10.1007/s10904–025–02964–y
  35. 35. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, et al. Xylem– and phloem–based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol. 2012;46(8):4434–41. https://doi.org/10.1021/es204212z
  36. 36. Upadhyay PK, Dey A, Singh VK, Dwivedi BS, Singh T, GA R, et al. Conjoint application of nano–urea with conventional fertilizers: an energy efficient and environmentally robust approach for sustainable crop production. PLoS One. 2023;18(7):e0284009. https://doi.org/10.1371/journal.pone.0284009
  37. 37. Al–Saray MKS, Al–Rubaee F. Effect of nano–nitrogen and manufacture organic fertilizer as supplementary fertilizer in the yield and its component for three synthetics of maize (Zea mays L.). Plant Arch. 2019;19(2):1473–9.
  38. 38. Dimkpa CO andrews J, Sanabria J, Bindraban PS, Singh U, Elmer WH, et al. Interactive effects of drought, organic fertilizer and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Sci Total Environ. 2020;722:137808. https://doi.org/10.1016/j.scitotenv.2020.137808
  39. 39. Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R. Effects of foliar applications of zinc and boron nano–fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic. 2016;210:57–64. https://doi.org/10.1016/j.scienta.2016.07.003
  40. 40. Elmer W, De La Torre–Roche R, Pagano L, Majumdar S, Zuverza–Mena N, Dimkpa C, et al. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Dis. 2018;102(7):1394–401. https://doi.org/10.1094/PDIS–10–17–1565–RE
  41. 41. Shalaby TA, El–Bialy SM, El–Mahrouk ME, Omara AE–D, El–Beltagi HS, El–Ramady H. Acclimatization of in vitro banana seedlings using root–applied bio–nanofertilizer of copper and selenium. Agronomy. 2022;12(2):539. https://doi.org/10.3390/agronomy12020539
  42. 42. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology. 2016;10(3):257–78. https://doi.org/10.3109/17435390.2015.1048326
  43. 43. Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent trends in foliar nanofertilizers: a review. Nanomaterials. 2023;13(21):2906. https://doi.org/10.3390/nano13212906
  44. 44. Hong J. Uptake of copper and cerium by alfalfa, lettuce and cucumber exposed to nCeO₂ and nCuO through the foliage or the roots: impacts on food quality, physiological and agronomical parameters [dissertation]. El Paso (TX): The University of Texas at El Paso; 2014. Available from: https://scholarworks.utep.edu/open_etd/1257.
  45. 45. Cao X, Yue L, Wang C, Luo X, Zhang C, Zhao X, et al. Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield and nutritional quality of soybean. ACS Nano. 2022;16(1):1170–81. https://doi.org/10.1021/acsnano.1c08900
  46. 46. Javot H, Maurel C. The role of aquaporins in root water uptake. Ann Bot. 2002;90(3):301–13. https://doi.org/10.1093/aob/mcf199
  47. 47. Ali AG. Role of plasma membrane intrinsic proteins (PIPs) subfamily and sulfur nanoparticle interactions in metalloids transport and tolerance/sensitivity in rice [dissertation]. Amherst (MA): University of Massachusetts Amherst; 2022.
  48. 48. Jin W, Li L, He W, Wei Z. Application of silica nanoparticles improved the growth, yield and grain quality of two salt–tolerant rice varieties under saline irrigation. Plants. 2024;13(17):2452. https://doi.org/10.3390/plants13172452
  49. 49. López–Moreno ML, Cedeño–Mattei Y, Bailón–Ruiz SJ, Vazquez–Nuñez E, Hernandez–Viezcas JA, Perales–Pérez OJ, et al. Environmental behavior of coated NMs: physicochemical aspects and plant interactions. J Hazard Mater. 2018;347:196–217. https://doi.org/10.1016/j.jhazmat.2017.12.060
  50. 50. Ali SA, Ali E, Hamdy G, Badawy MSE, Ismail AR, El–Sabbagh IA, et al. Enhancing physical characteristics and antibacterial efficacy of chitosan through investigation of microwave–assisted chemically formulated chitosan–coated ZnO and chitosan/ZnO physical composite. Sci Rep. 2024;14(1):9348. https://doi.org/10.1038/s41598–024–45863–1
  51. 51. Malathi P, Sellamuthu K. Maize yield and iron uptake as impacted by iron citrate treatment. Curr J Appl Sci Technol. 2022;41(22):18-22. https://doi.org/10.9734/cjast/2022/v41i2231756
  52. 52. Bender RR, Haegele JW, Ruffo ML, Below FE. Nutrient uptake, partitioning and remobilization in modern, transgenic insect‐protected maize hybrids. Agron J. 2013;105(1):161–70. https://doi.org/10.2134/agronj2012.0263
  53. 53. Djanaguiraman M, Anbazhagan V, Dhankher OP, Prasad PV. Uptake, translocation, toxicity and impact of nanoparticles on plant physiological processes. Plants. 2024;13(22):3137. https://doi.org/10.3390/plants13223137
  54. 54. Jiang H, Lv L, Ahmed T, Jin S, Shahid M, Noman M, et al. Effect of the nanoparticle exposures on the tomato bacterial wilt disease control by modulating the rhizosphere bacterial community. Int J Mol Sci. 2021;23(1):414. https://doi.org/10.3390/ijms23010414
  55. 55. Hong J, Wang C, Wagner DC, Gardea–Torresdey JL, He F, Rico CM. Foliar application of nanoparticles: mechanisms of absorption, transfer and multiple impacts. Environ Sci Nano. 2021;8(5):1196–210. https://doi.org/10.1039/d0en01216a
  56. 56. Dayani S, Mazaheri–Tirani M, Hosseini R. Physiological responses of plants to nanoparticles and chelating agents. In: Advanced Nanotechnology in Plants: Methods and Applications. 2024:213. https://doi.org/10.1016/B978–0–323–99239–6.00014–5
  57. 57. Deshpande P, Dapkekar A, Oak M, Paknikar K, Rajwade J. Nanocarrier–mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat. PLoS One. 2018;13(1):e0191035. https://doi.org/10.1371/journal.pone.0191035
  58. 58. Lv W, Geng H, Zhou B, Chen H, Yuan R, Ma C, et al. The behavior, transport and positive regulation mechanism of ZnO nanoparticles in a plant–soil–microbe environment. Environ Pollut. 2022;315:120368. https://doi.org/10.1016/j.envpol.2022.120368
  59. 59. Li J, Hu J, Xiao L, Wang Y, Wang X. Interaction mechanisms between α–Fe₂O₃, γ–Fe₂O₃ and Fe₃O₄ nanoparticles and Citrus maxima seedlings. Sci Total Environ. 2018;625:677–85. https://doi.org/10.1016/j.scitotenv.2017.12.330
  60. 60. Verma KK, Song XP, Degu HD, Guo D, Joshi A, Huang HR, et al. Recent advances in nitrogen and nano–nitrogen fertilizers for sustainable crop production: a mini–review. Chem Biol Technol Agric. 2023;10(1):111. https://doi.org/10.1186/s40538–023–00427–8
  61. 61. Sikka R, Kalia A, Ahuja R, Sidhu SK, Chaitra P. Substitution of soil urea fertilization to foliar nano urea fertilization decreases growth and yield of rice and wheat. Plant Soil. 2024:1–17. https://doi.org/10.1007/s11104–024–06687–5
  62. 62. Mai Y, Ren Y, Deng S, Ashraf U, Tang X, Duan M, et al. Influence of ZnO nanoparticles on early growth stage of fragrant rice at low temperature (LT) stress. J Soil Sci Plant Nutr. 2024;24(1):1301–17. https://doi.org/10.1007/s42729–024–01745–0
  63. 63. Song Y, Jiang M, Zhang H, Li R. Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules. 2021;26(8):2196. https://doi.org/10.3390/molecules26082196
  64. 64. Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul–Hamid D, Decsi K, et al. The influence of zinc oxide nanoparticles and salt stress on the morphological and some biochemical characteristics of Solanum lycopersicum L. plants. Plants. 2024;13(10):1418. https://doi.org/10.3390/plants13101418
  65. 65. Pérez Velasco EA, Betancourt Galindo R, Valdez Aguilar LA, Gonzalez Fuentes JA, Puente Urbina BA, Lozano Morales SA, et al. Effects of the morphology, surface modification and application methods of ZnO–NPs on the growth and biomass of tomato plants. Molecules. 2020;25(6):1282. https://doi.org/10.3390/molecules25061282
  66. 66. Reddy KS, Shivay YS, Kumar D, Pooniya V, Prasanna R, Mandi S, et al. Relative performance of granulated and nano urea on productivity and nitrogen use efficiency of wheat–rice sequence. Plant Nano Biol. 2025;11:100131. https://doi.org/10.1016/j.plnmb.2024.100131
  67. 67. Srivastav A, Ganjewala D, Singhal RK, Rajput VD, Minkina T, Voloshina M, et al. Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants. 2021;10(12):2556. https://doi.org/10.3390/plants10122556
  68. 68. Zhu Z–J, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, et al. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol. 2012;46(22):12391–8. https://doi.org/10.1021/es302513r
  69. 69. Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL. Charge, size and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol. 2015;49(12):7380–90. https://doi.org/10.1021/es5052089
  70. 70. Farajollahi Z, Eisvand HR, Nazarian–Firouzabadi F, Nasrollahi AH. Nano–Fe nutrition improves soybean physiological characteristics, yield, root features and water productivity in different planting dates under drought stress conditions. Ind Crops Prod. 2023;198:116698. https://doi.org/10.1016/j.indcrop.2022.116698
  71. 71. Konrad W, Katul G, Roth–Nebelsick A, Jensen KH. Xylem functioning, dysfunction and repair: a physical perspective and implications for phloem transport. Tree Physiol. 2019;39(2):243–61. https://doi.org/10.1093/treephys/tpy112
  72. 72. Ma Y, He X, Zhang P, Zhang Z, Ding Y, Zhang J, et al. Xylem and phloem based transport of CeO₂ nanoparticles in hydroponic cucumber plants. Environ Sci Technol. 2017;51(9):5215–21. https://doi.org/10.1021/acs.est.7b00338
  73. 73. Cao Y, Ma C, Chen H, Zhang J, White JC, Chen G, et al. Xylem–based long–distance transport and phloem remobilization of copper in Salix integra Thunb. J Hazard Mater. 2020;392:122428. https://doi.org/10.1016/j.jhazmat.2020.122428
  74. 74. Tombuloglu H, Ercan I, Alshammari T, Tombuloglu G, Slimani Y, Almessiere M, et al. Incorporation of micro–nutrients (nickel, copper, zinc and iron) into plant body through nanoparticles. J Soil Sci Plant Nutr. 2020;20:1872–81. https://doi.org/10.1007/s42729–020–00274–1
  75. 75. Wang Z, Yue L, Dhankher OP, Xing B. Nano–enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int. 2020;142:105831. https://doi.org/10.1016/j.envint.2020.105831
  76. 76. Ditta A, Arshad M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev. 2016;5(2):209–29. https://doi.org/10.1515/ntrev–2016–0010
  77. 77. Singh A, Singh Ná, Afzal S, Singh T, Hussain I. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci. 2018;53(1):185–201. https://doi.org/10.1007/s10853–017–1544–4
  78. 78. Wang C, Zhang H, Ruan L, Chen L, Li H, Chang X–L, et al. Bioaccumulation of ¹³C–fullerenol nanomaterials in wheat. Environ Sci Nano. 2016;3(4):799–805. https://doi.org/10.1039/C6EN00167H
  79. 79. Jeon SJ, Zhang Y, Castillo C, Nava V, Ristroph K, Therrien B, et al. Targeted delivery of sucrose–coated nanocarriers with chemical cargoes to the plant vasculature enhances long–distance translocation. Small. 2024;20(7):2304588. https://doi.org/10.1002/smll.202304588
  80. 80. Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol. 2021;55(20):13417–31. https://doi.org/10.1021/acs.est.1c02656
  81. 81. Servin AD. Determination of the uptake and effects of TiO₂ nanoparticles in cucumber (Cucumis sativus) [dissertation]. El Paso (TX): The University of Texas at El Paso; 2014. Available from: https://scholarworks.utep.edu/open_etd/1731
  82. 82. Kavitha S, Renugadevi J, Renganayaki P, Suganthy M, Meenakshi P, Raja K, et al. Comparative phytochemical profiling of Psophocarpus tetragonolobus (L.) DC seed extracts for effective storage of cowpea seeds. Legume Res. 2024;47(5):756–64. https://doi.org/10.18805/lr–(2024–054)
  83. 83. Wu H, Jiang X, Tong J, Wang J, Shi J. Effects of Fe₃O₄ nanoparticles and nano hydroxyapatite on Pb and Cd stressed rice (Oryza sativa L.) seedling. Chemosphere. 2023;329:138686. https://doi.org/10.1016/j.chemosphere.2023.138686
  84. 84. Orzoł A, Cruzado–Tafur E, Gołębiowski A, Rogowska A, Pomastowski P, Górecki RJ, et al. Comprehensive study of Si–based compounds in selected plants (Pisum sativum L., Medicago sativa L., Triticum aestivum L.). Molecules. 2023;28(11):4311. https://doi.org/10.3390/molecules28114311
  85. 85. Kavitha S, Renugadevi J, Renganayaki P, Suganthy M, Meenakshi P, Raja K, et al. Phytochemical profiling of Erythrina variegata leaves by gas chromatography–mass spectroscopy. Agric Sci Dig. 2023;43(4):442–50.
  86. 86. Navarro DA, Bisson MA, Aga DS. Investigating uptake of water–dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater. 2012;211:427–35. https://doi.org/10.1016/j.jhazmat.2011.12.045
  87. 87. Davis RA, Rippner DA, Hausner SH, Parikh SJ, McElrone AJ, Sutcliffe JL. In vivo tracking of copper–64 radiolabeled nanoparticles in Lactuca sativa. Environ Sci Technol. 2017;51(21):12537–46. https://doi.org/10.1021/acs.est.7b02550
  88. 88. Quintela AL, Santos MF, de Lima RF, Mayer JL, Marcheafave GG, Arruda MA, et al. Influence of silver nanoparticles on the metabolites of two transgenic soybean varieties: an NMR–based metabolomics approach. J Agric Food Chem. 2024;72(21):12281–94. https://doi.org/10.1021/acs.jafc.4c03421
  89. 89. Jiang X, White JC, He E, Van Gestel CA, Cao X, Zhao L, et al. Foliar exposure of deuterium stable isotope–labeled nanoplastics to lettuce: quantitative determination of foliar uptake, transport and trophic transfer in a terrestrial food chain. Environ Sci Technol. 2024;58(35):15438–49. https://doi.org/10.1021/acs.est.4c02023
  90. 90. Wang W, Liu B, Chen L, Xia H, Chen P, Zhang P, et al. Effects of fullerene C₆₀ on the uptake of nitrogen and mineral elements in crops using synchrotron radiation micro–X–ray fluorescence spectrometry (SR–μXRF) and stable isotope labelling. Environ Sci Nano. 2025;12(1):481–90. https://doi.org/10.1039/D4EN01234A
  91. 91. Raven JA. Commentary on the use of nutrient–coated quantum dots as a means of tracking nutrient uptake by and movement within plants. Plant Soil. 2022;476(1):535–48. https://doi.org/10.1007/s11104–022–05678–1
  92. 92. Freire BM, Rua–Ibarz A, Nakadi FV, Bolea–Fernandez E, Barriuso–Vargas JJ, Lange CN, et al. Tracing isotopically labeled selenium nanoparticles in plants via single–particle ICP–mass spectrometry. Talanta. 2024;277:126417. https://doi.org/10.1016/j.talanta.2023.126417
  93. 93. Naozuka J, Oliveira AP, Nomura CS. Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP–MS: a review. Anal Bioanal Chem. 2024;416(11):2605–23. https://doi.org/10.1007/s00216–024–04789–2
  94. 94. Tan W, Peralta–Videa JR, Gardea–Torresdey JL. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs – a critical review. Environ Sci Nano. 2018;5(2):257–78. https://doi.org/10.1039/C7EN01234A
  95. 95. Afzal S, Aftab T, Singh NK. Impact of zinc oxide and iron oxide nanoparticles on uptake, translocation and physiological effects in Oryza sativa L. J Plant Growth Regul. 2022;41(4):1445–61. https://doi.org/10.1007/s00344–022–10659–8
  96. 96. Colín–Orozco J, Colín–Orozco E, Valdivia–Barrientos R. Production of nanofibers by electrospinning as carriers of agrochemical. Fibers. 2024;12(8):64. https://doi.org/10.3390/fibers12080064
  97. 97. Roy D, Yadav AK, Goutam SP. Green synthesized TiO₂ nanoparticles as a stimulator for aquaculture growth of Oryza sativa L. Next Sustainability. 2025;5:100073. https://doi.org/10.1016/j.nsust.2024.100073
  98. 98. Safhi FA, Alqudah AM, Börner A, Thabet SG. Genome–wide analysis reveals how nano–iron fortifies salt–stressed barley via enhanced antioxidant defense mechanisms. Plant Mol Biol Rep. 2025:1–18. https://doi.org/10.1007/s11105–025–01234–5
  99. 99. Namasivayam SKR, Kumar S, Samrat K, Bharani RA. Noteworthy biocompatibility of effective microorganisms (EM) like microbial beneficial culture formulation with metal and metal oxide nanoparticles. Environ Res. 2023;231:116150. https://doi.org/10.1016/j.envres.2022.116150
  100. 100. Rokana S, Mandal N, Singh M, Ghosh M, Tiwari A, Biswas S, et al. Evaluation of synthesized nanoscale Fe carriers for enhanced wheat crop nutrition in a Typic Ustifluvents. BioNanoScience. 2025;15(1):1–20. https://doi.org/10.1007/s12668–024–01001–2
  101. 101. Masoumi Z, Haghighi M, Mozafarian M. Effects of foliar spraying with melatonin and chitosan nano–encapsulated melatonin on tomato (Lycopersicon esculentum L. cv. Falcato) plants under salinity stress. BMC Plant Biol. 2024;24(1):961. https://doi.org/10.1186/s12870–024–03596–7
  102. 102. Landa P, Dytrych P, Prerostova S, Petrova S, Vankova R, Vanek T. Transcriptomic response of Arabidopsis thaliana exposed to CuO nanoparticles, bulk material and ionic copper. Environ Sci Technol. 2017;51(18):10814–24. https://doi.org/10.1021/acs.est.7b02832
  103. 103. Pandya P, Kumar S, Patil G, Mankad M, Shah Z. Impact of ZnO nanopriming on physiological and biochemical traits of wheat (Triticum aestivum L.) seedling. CABI Agric Biosci. 2024;5(1):27. https://doi.org/10.1186/s43170–024–00027–0
  104. 104. Iqbal A, Mo Z, Pan S–G, Qi J–Y, Hua T, Imran M, et al. Exogenous TiO₂ nanoparticles alleviate Cd toxicity by reducing Cd uptake and regulating plant physiological activity and antioxidant defense systems in rice (Oryza sativa L.). Metabolites. 2023;13(6):765. https://doi.org/10.3390/metabo13060765
  105. 105. Yan L, Li P, Zhao X, Ji R, Zhao L. Physiological and metabolic responses of maize (Zea mays) plants to Fe₃O₄ nanoparticles. Sci Total Environ. 2020;718:137400. https://doi.org/10.1016/j.scitotenv.2020.137400
  106. 106. Mahmoud AWM, Samy MM, Sany H, Eid RR, Rashad HM, Abdeldaym EA. Nanopotassium, nanosilicon and biochar applications improve potato salt tolerance by modulating photosynthesis, water status and biochemical constituents. Sustainability. 2022;14(2):723. https://doi.org/10.3390/su14020723
  107. 107. Rahmani N, Radjabian T, Soltani BM. Impacts of foliar exposure to multi–walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant. Plant Physiol Biochem. 2020;150:27–38. https://doi.org/10.1016/j.plaphy.2020.01.008
  108. 108. Akhoundnejad Y, Karakas O, Demirci O. Response of lettuce to silver nanoparticles under drought conditions. Iran J Sci Technol A Sci. 2022;46(1):111–20. https://doi.org/10.1007/s40995–022–01178–2
  109. 109. Arora V, Khosla B. Synthesis of phosphorus nano–fertilisers their strategic applications and effect on plant growth. Int J Environ Sci Technol. 2024:1–20. https://doi.org/10.1007/s13762–024–06554–1
  110. 110. Avellan A, Yun J, Zhang Y, Spielman–Sun E, Unrine JM, Thieme J, et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation and leaf–to–rhizosphere transport in wheat. ACS Nano. 2019;13(5):5291–305. https://doi.org/10.1021/acsnano.9b02718
  111. 111. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. Uptake, translocation and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128–32. https://doi.org/10.1002/smll.200900475
  112. 112. Al–Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, et al. Quantum dot transport in soil, plants and insects. Sci Total Environ. 2011;409(17):3237–48. https://doi.org/10.1016/j.scitotenv.2011.05.029
  113. 113. Ma C, Liu H, Chen G, Zhao Q, Guo H, Minocha R, et al. Dual roles of glutathione in silver nanoparticle detoxification and enhancement of nitrogen assimilation in soybean (Glycine max (L.) Merrill). Environ Sci Nano. 2020;7(7):1954–66. https://doi.org/10.1039/d0en00319a
  114. 114. Wu M, Li Y, Yuan Y, Li S, Song X, Yin J. Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins. Food Control. 2023;145:109498. https://doi.org/10.1016/j.foodcont.2022.109498
  115. 115. Wang S, Kurepa J, Smalle JA. Ultra–small TiO₂ nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ. 2011;34(5):811–20. https://doi.org/10.1111/j.1365–3040.2011.02257.x
  116. 116. Zhao L, Peralta–Videa JR, Ren M, Varela–Ramirez A, Li C, Hernandez–Viezcas JA, et al. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem Eng J. 2012;184:1–8. https://doi.org/10.1016/j.cej.2011.12.017
  117. 117. Kong M, Wang F, Jing H, Yang X, Chang X, Xu H, et al. Sustainable disease management in tomatoes: Fe₃O₄ nanoparticles as an eco‐friendly alternative to conventional fungicides for Fusarium wilt control. Pest Manag Sci. 2025. https://doi.org/10.1002/ps.8235
  118. 118. Farhangi–Abriz S, Ghassemi–Golezani K, Torabian S, Rahimzadeh S, Osati F, Safarpour H. Response of soybean plants to the foliar application of carbon quantum dots under drought stress: A field study. J Plant Growth Regul. 2025;44(2):621–31. https://doi.org/10.1007/s00344–024–11278–4
  119. 119. Larue C, Laurette J, Herlin–Boime N, Khodja H, Fayard B, Flank A–M, et al. Accumulation, translocation and impact of TiO₂ nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ. 2012;431:197–208. https://doi.org/10.1016/j.scitotenv.2012.05.030
  120. 120. Horstmann C, Davenport V, Zhang M, Peters A, Kim K. Transcriptome profile alterations with carbon nanotubes, quantum dots and silver nanoparticles: A review. Genes. 2021;12(6):794. https://doi.org/10.3390/genes12060794
  121. 121. Awad SM, Hathout TA, Farroh KY. Pleotropic roles of biosynthesized cerium oxide nanoparticles on morphological, physiological and molecular aspects on Brassica napus. Egypt J Bot. 2023;63(3):765–86. https://doi.org/10.21608/ejbo.2023.288979
  122. 122. Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR. HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym. 2018;199:11–9. https://doi.org/10.1016/j.carbpol.2018.06.077
  123. 123. Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res. 2013;15:1–15. https://doi.org/10.1007/s11051–013–2097–5
  124. 124. Amrutham S, Maragoni V, Guttena V. One–step green synthesis of palladium nanoparticles using neem gum (Azadirachta indica): characterization, reduction of Rhodamine 6G dye and free radical scavenging activity. Appl Nanosci. 2020;10:4505–11. https://doi.org/10.1007/s13204–020–01482–6
  125. 125. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–402. https://doi.org/10.1007/s00299–014–1627–9

Downloads

Download data is not yet available.