Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Performance of Telenomus remus (Hymenoptera: Scelionidae), an egg parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae), under different temperature regimes

DOI
https://doi.org/10.14719/pst.10042
Submitted
14 June 2025
Published
29-08-2025 — Updated on 29-09-2025
Versions

Abstract

Maize fall armyworm, Spodoptera frugiperda (J.E. Smith) (Noctuidae: Lepidoptera), is a highly destructive and invasive pest of maize, causing havoc in major maize growing states of the country since 2018. Integrated Pest Management (IPM) strategies are being advocated to farmers for the containment of the pest. Among the various IPM components, biological control using the egg parasitoid, Telenomus remus (Nixon) (Scelionidae: Hymenoptera) could be considered a promising strategy, as the pest can be managed at a much earlier stage. This study evaluated the influence of five temperature regimes (20, 25, 30, 35 and 40  °C) on the developmental and reproductive performance of T. remus. Results indicated that 25-30  °C was optimal, with the highest parasitism (80.70 ± 5.29 eggs/female/24 hrs) and adult emergence (99.51 ± 0.20 %) at 25  °C. Developmental time decreased with increase in temperature, ranging from 8.60 days (35 °C) to 21.95 days (20  °C). Peak fecundity (122.7 ± 3.56 eggs/female) and intrinsic rate of increase (rm = 0.479) occurred at 30  °C. No reproduction occurred at 40  °C. These findings underscore the critical role of temperature in optimizing T. remus performance, aiding its effective integration into biological control programs against S. frugiperda.

References

  1. 1. Togola A, Beyene Y, Bocco R, Tepa-Yotto G, Gowda M, Too A, et al. Fall armyworm (Spodoptera frugiperda) in Africa: Insights into biology, ecology and impact on staple crops, food systems and management approaches. Front Agron. 2025;7:1538198. https://doi.org/10.3389/fagro.2025.1538198
  2. 2. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 2017;28(5):196-201. https://doi.org/10.1564/v28_oct_02
  3. 3. Sharanabasappa S, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, et al. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. J Plant Prot Res. 2018;58(1). https://doi.org/10.5555/20183320211
  4. 4. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One. 2016;11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632
  5. 5. Cock MJ, Beseh PK, Buddie AG, Cafá G, Crozier J. Molecular methods to detect Spodoptera frugiperda in Ghana and implications for monitoring the spread of invasive species in developing countries. Sci Rep. 2017;7(1):4103. https://doi.org/10.1038/s41598-017-04238-y
  6. 6. Kasoma C, Shimelis H, Laing MD. Fall armyworm invasion in Africa: implications for maize production and breeding. J Crop Improv. 2021;35(1):111-46. https://doi.org/10.1080/15427528.2020.1802800
  7. 7. Badhai S, Gupta AK, Koiri B. Integrated management of fall armyworm (Spodoptera frugiperda) in maize crop. Rev Food Agric. 2020;1(1):27-9. https://doi.org/10.26480/rfna.01.2020.27.29
  8. 8. Rajashekhar M, Rajashekar B, Reddy TP, Manikyanahalli Chandrashekara K, Vanisree K, Ramakrishna K, et al. Evaluation of farmers friendly IPM modules for the management of fall armyworm, Spodoptera frugiperda (JE Smith) in maize in the hot semiarid region of India. Sci Rep. 2024;14(1):7118. https://doi.org/10.1038/s41598-024-57860-y
  9. 9. Yu G, Sheng L, Zhang Z, Zou Q, Lai X, Tang Y, et al. Molecular insights into diapause mechanisms in Telenomus remus for improved biological control. Insects. 2025;16(4):393. https://doi.org/10.3390/insects16040393
  10. 10. Laminou SA, Ba MN, Karimoune L, Doumma A, Muniappan R. Parasitism of Telenomus remus Nixon on Spodoptera frugiperda JE Smith and acceptability of Spodoptera littoralis Boisduval as factitious host. Biol Control. 2023;183:105242. https://doi.org/10.1016/j.biocontrol.2023.105242
  11. 11. Wengrat AP, Coelho Junior A, Parra JR, Takahashi TA, Foerster LA, Corrêa AS, et al. Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil. Sci Rep. 2021;11(1):14110. https://doi.org/10.1038/s41598-021-93510-3
  12. 12. Colmenarez YC, Babendreier D, Ferrer Wurst FR, Vásquez-Freytez CL, de Freitas Bueno A. The use of Telenomus remus (Nixon, 1937) (Hymenoptera: Scelionidae) in the management of Spodoptera spp.: potential, challenges and major benefits. CABI Agric Biosci. 2022;3(1):5. https://doi.org/10.1186/s43170-021-00071-6
  13. 13. Cave RD. Biology, ecology and use in pest management of Telenomus remus. Biocontrol News Inf. 2000;21(1):21N-6N.
  14. 14. De Lacerda LF, Coelho Jr A, De Paula PH, Amorim DJ, Demetrio CG, Parra JR. Biological basis for adoption of an isoline of Telenomus remus (Hymenoptera: Scelionidae) for an augmentative biological-control program for Spodoptera frugiperda (Lepidoptera: Noctuidae). J Insect Sci. 2023;23(5):6. https://doi.org/10.1093/jisesa/iead045
  15. 15. Mubayiwa M, Machekano H, Mvumi BM, Opio WA, Segaiso B, Chidawanyika F, et al. Thermal performance drifts between the egg parasitoid Telenomus remus and the fall armyworm may threaten the efficacy of biological control under climate change. Entomol Exp Appl. 2025;173(5):338-50. https://doi.org/10.1111/eea.13557
  16. 16. Sampaio F, Marchioro CA, Foerster LA. Modeling parasitoid development: climate change impacts on Telenomus remus (Nixon) and Trichogramma foersteri (Takahashi) in southern Brazil. Pest Manag Sci. 2025. https://doi.org/10.1002/ps.8888
  17. 17. de Melo MC, Coelho Jr A, Garcia AG, Parra JR. Mass rearing requirements and ecological zoning of Telenomus remus estimated through life table in different temperatures and relative humidities. Biol Control. 2024;195:105546. https://doi.org/10.1016/j.biocontrol.2024.105546
  18. 18. Priyanka SL, Jeyarani S, Sathiah N, Mohankumar S, Nakkeeran S. Influence of host egg age on parasitic potential of the entomophagous, Telenomus remus Nixon (Hymenoptera: Scelionidae) against the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and investigations on the developmental biology and ultrastructure of egg parasitoid immature stages. Egypt J Biol Pest Control. 2023;33(1):26. https://doi.org/10.1186/s41938-023-00676-1
  19. 19. Srinivasan T, Chandrikamohan. Population growth potential of Bracon brevicornis Wesmael (Braconidae: Hymenoptera): a life table analysis. Acta Phytopathol Entomol Hung. 2017;52(1):123-9. https://doi.org/10.1556/038.52.2017.010
  20. 20. Win SS, Muhamad R, Ahmad ZA, Adam NA. Life table and population parameters of Nilaparvata lugens Stål (Homoptera: Delphacidae) on rice. Trop Life Sci Res. 2011;22(1):25-35. https://europepmc.org/article/PMC/3819089
  21. 21. Bueno RC, Carneiro TR, Pratissoli D, Bueno AD, Fernandes OA. Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. Cienc Rural. 2008;38:1-6. https://doi.org/10.1590/S0103-84782008000100001
  22. 22. Pomari AF, Bueno AD, De Freitas Bueno RC, De Oliveira Menezes Junior A. Biological characteristics and thermal requirements of the biological control agent Telenomus remus (Hymenoptera: Platygastridae) reared on eggs of different species of the genus Spodoptera (Lepidoptera: Noctuidae). Ann Entomol Soc Am. 2012;105(1):73-81. https://doi.org/10.1603/AN11115
  23. 23. Del Pino M, Gallego JR, Hernández Suárez E, Cabello T. Effect of temperature on life history and parasitization behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects. 2020;11(8):482. https://doi.org/10.3390/insects11080482
  24. 24. Foerster LA, Butnariu AR. Development, reproduction and longevity of Telenomus cyamophylax, egg parasitoid of the velvetbean caterpillar Anticarsia gemmatalis, in relation to temperature. Biol Control. 2004;29(1):1-4. https://doi.org/10.1016/S1049-9644(03)00133-6
  25. 25. Schwartz A, Gerling D. Adult biology of Telenomus remus (Hymenoptera: Scelionidae) under laboratory conditions. Entomophaga. 1974;19:483-92. https://doi.org/10.1007/BF02372784
  26. 26. Van Welzen CR, Waage JK. Adaptive responses to local mate competition by the parasitoid, Telenomus remus. Behav Ecol Sociobiol. 1987;21:359-65.
  27. 27. Chaves VF, Pereira FF, Torres JB, da Silva IF, Pastori PL, de Oliveira HN, et al. Thermal requirements of Ooencyrtus submetallicus (Hym.: Encyrtidae) and Telenomus podisi (Hym.: Platygastridae) parasitizing Euschistus heros eggs (Hem.: Pentatomidae). Insects. 2021;12(10):924. https://doi.org/10.3390/insects12100924
  28. 28. Bueno RC, Carneiro TR, Bueno AD, Pratissoli D, Fernandes OA, Vieira SS. Parasitism capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs. Braz Arch Biol Technol. 2010;53:133-9. https://doi.org/10.1590/S1516-89132010000100017
  29. 29. Hernández D, Diaz F. Effect of age of the parasitoid Telenomus remus Nixon (Hymenoptera: Scelionidae) on its oviposition capacity and sex ratio of progeny. CABI Digital Library. https://www.cabidigitallibrary.org/doi/full/10.5555/19961108279
  30. 30. Mills NJ, Kuhlmann U. The relationship between egg load and fecundity among Trichogramma parasitoids. Ecol Entomol. 2000;25(3):315-24. https://doi.org/10.1046/j.1365-2311.2000.00260.x
  31. 31. Sari L, Maryana N, Hidayat P. Biology and life table of Trichogramma chilotraeae, egg parasitoids of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). IOP Conf Ser Earth Environ Sci. 2021;948(1):012044. https://doi.org/10.1088/1755-1315/948/1/012044
  32. 32. Castellanos NL, Bueno AF, Haddi K, Silveira EC, Rodrigues HS, Hirose E, et al. The fitness and economic benefits of rearing the parasitoid Telenomus podisi under fluctuating temperature regime. Neotrop Entomol. 2019;48:934-48. https://doi.org/10.1007/s13744-019-00717-1

Downloads

Download data is not yet available.