Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Heavy metal distribution in profile samples of different land use systems in post gold mining areas of Kolar Gold Fields (KGF), Karnataka

DOI
https://doi.org/10.14719/pst.10043
Submitted
13 June 2025
Published
07-10-2025

Abstract

Intensive gold mining activities in Kolar Gold Fields (KGF), Karnataka, have resulted in substantial buildup of toxic heavy metals in surrounding ecosystems. This study investigates the spatial and vertical distribution of eight heavy metals (iron, copper, manganese, zinc, nickel, cadmium, lead and arsenic) across profile samples of four land use systems ALUS (agricultural land use system), HLUS (horticultural land use system), BLUS (barren land use system) and FLUS (forest land use system) in the post mining areas. Metal concentration trends across soil depths were analyzed using multivariate techniques. Arsenic (As) and manganese (Mn) emerged as the most abundant contaminants, especially in BLUS (28.56 mg kg-1 and 37.72 mg kg-1) respectively. Surface horizons consistently showed higher metal accumulation. The heavy metals in four land use systems followed the order of Mn> Fe> As> Ni> Cu> Zn> Pb> Cd.  Such elevated levels of heavy metals can impair plant growth by disrupting nutrient uptake and inducing phytotoxic effects, thereby lowering crop productivity in contaminated soils. The decline in soil fertility associated with heavy metal build up highlights the urgent need for sustainable land management in post mining regions. Phytoremediation strategies, including the use of hyperaccumulator plants, offer a viable approach to restore soil health and mitigate ecological risk. Multivariate analysis like cluster analysis revealed strong association among metals, particularly Fe, Cu, Zn and As. Cluster analysis grouped ALUS and HLUS due to similar moderate contamination levels and same land management practices, while BLUS and FLUS formed distinct cluster with elevated metal loads. The heat map and box plot confirmed high spatial and vertical variability of heavy metal distribution. These findings underscore the environmental risks posed by abandoned mine tailings in the region and the damage it causes to plants and surrounding ecosystem.

References

  1. 1. Soltani N, Keshavarzi B, Moore F, Sorooshian A, Ahmadi MR. Distribution of potentially toxic elements (PTEs) in tailings, soils and plants around Gol-E-Gohar iron mine: A case study in Iran. Environ Sci Pollut Res. 2017;24:18798-816. https://doi.org/10.1007/s11356-017-9342-5
  2. 2. Mir MA, Arya S, Kak AM. Health risk assessment of heavy metals for population via consumption of pulses and cereals. Int J Biol Innov. 2020;2:241-6. https://doi.org/10.46505/ijbi.2020.2222
  3. 3. Li Q, Lesseur C, Srirangam P, Kaur K, Hermetz K, Caudle WM, et al. Associations between prenatal organophosphate pesticide exposure and placental gene networks. Environ Res. 2023;224:115490. https://doi.org/10.1016/j.envres.2023.115490
  4. 4. Zheng J, Noller B, Huynh T, Ng J, Taga R, Diacomanolis V, et al. How the population in Mount Isa is living with lead exposure from mining activities. Extr Ind Soc. 2021;8:123-34. https://doi.org/10.1016/j.exis.2020.11.008
  5. 5. Aubineau J, Parat F, Elghali A, Raji O, Addou A, Bonnet C, et al. Highly variable content of fluorapatite-hosted CO32- in the upper Cretaceous/Paleogene phosphorites (Morocco) and implications for paleo depositional conditions. Chem Geol. 2022;597:120818. https://doi.org/10.1016/j.chemgeo.2022.120818
  6. 6. Navarro MC, Perez-Sirvent C, Martinez-Sanchez MJ, Vidal J, Tovar PJ, Bech J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J Geochem Explor. 2008;96:186-93. https://doi.org/10.1016/j.gexplo.2007.04.011
  7. 7. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011;2011:402647. https://doi.org/10.5402/2011/402647
  8. 8. Alloway BJ, Ayres DC. Chemical principles of environmental pollution. 2nd ed. Boca Raton: Chapman and Hall; 1997. p. 53-69.
  9. 9. Huang L, Yu G, Long XL. Immobilization of Pb, Cd, Cu and Zn in a multi-metal contaminated acidic soil using inorganic amendment mixtures. Int J Environ Res. 2017;11:425-37. https://doi.org/10.1007/s41742-017-0038-y
  10. 10. Subbaraman JV. Scope for geobotanical prospecting for gold in Karnataka and Andhra Pradesh. Curr Sci. 2006;90:750.
  11. 11. Chandra R, Sathya V, Prusty BAK, Azeez PA, Mahimairaja S. The Kolar Gold Mines, India: Present status and prospects for phytomining. Sustainable Industrial Processing Summit. 2014;1:273-82. https://doi.org/10.13140/2.1.3719.9684
  12. 12. Krishna BR, Gejji FH. The golden earth of Karnataka. Curr Sci. 2001;80(12):1475-6. http://www.jstor.org/stable/24106272
  13. 13. Reddy PR. Environmental geological studies in the Kolar Gold Fields area, Karnataka State. Kolar Gold Mine’s Centenary Celebrations. 1980;2:423-35.
  14. 14. Rao SM, Reddy BV. Characterization of Kolar gold field mine tailings for cyanide and acid drainage. Geotech Geol Eng. 2006;24(6):1545-59. https://doi.org/10.1007/s10706-005-3372-3
  15. 15. Roy S, Adhikari GR. Seasonal variation in suspended particulate matter vis-a-vis meteorological parameters at Kolar Gold Fields, India. Int J Environ Eng. 2009;1(4):432-45. https://doi.org/10.1504/IJEE.2009.027985
  16. 16. Divya S. Use of gold ore tailings (GOT) as a source of micronutrients to sunflower (Helianthus annuus L.) in a vertisol [MSc thesis]. Dharwad: University of Agricultural Sciences; 2007.
  17. 17. Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 1978;42:421-8. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  18. 18. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 2021;9(3):42. https://doi.org/10.3390/toxics9030042
  19. 19. Christou A, Theologides CP, Costa C, Kalavrouziotis IK, Varnavas SP. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J Geochem Explor. 2017;178:16-22. https://doi.org/10.1016/j.gexplo.2017.03.012
  20. 20. Cott AP, Zajdlik AB, Palmer JM, McPherson DM. Arsenic and mercury in lake whitefish and burbot near the abandoned Giant Mine on Great Slave Lake. J Great Lakes Res. 2016:223-32. https://doi.org/10.1016/j.jglr.2015.11.004
  21. 21. Li F, Fan Z, Xiao P, Oh K, Ma X, Hou W. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol. 2009;57:1815-22. https://doi.org/10.1007/s00254-008-1469-8
  22. 22. Manning BA, Goldberg S. Adsorption and stability of arsenic (III) at the clay mineral–water interface. Environ Sci Technol. 1997;31(7):2005-11. https://doi.org/10.1021/es9608104
  23. 23. Damian F, Damian G, Radu LR, Macovei G, Iepure G, Napradean I, et al. Soils from the Baia Mare Zone and the heavy metals pollution. Carpathian J Earth Environ Sci. 2008;3(1):85-98.
  24. 24. Roy S, Gupta P, Renaldy TA. Impacts of gold mill tailings dumps on agriculture lands and its ecological restoration at Kolar Gold Fields, India. Resour Environ. 2012;2(1):67-79. http://dx.doi.org/10.5923/j.re.20120201.09
  25. 25. Hernandez L, Probst A, Probst JL, Ulrich E. Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. Sci Total Environ. 2003;312(1-3):195-219. https://doi.org/10.1016/S0048-9697(03)00223-7
  26. 26. Kříbek B, Majer V, Veselovský F, Nyambe I. Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. J Geochem Explor. 2010;104(3):69-86. https://doi.org/10.1016/j.gexplo.2009.12.005
  27. 27. Fashola MO. Bioremediation potential of metal resistant bacteria isolated from abandoned gold mine tailings [PhD thesis]. South Africa: North-West University; 2017.
  28. 28. Eggleton J, Thomas KV. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int. 2004;30:973-80. https://doi.org/10.1016/j.envint.2004.03.001
  29. 29. Aweng ER, Karimah M, Suhaimi O. Heavy metals concentration of irrigation water, soils and fruit vegetables in Kota Bharu area, Kelantan, Malaysia. J Appl Sci Environ Sanit. 2011;6(4):463-70.
  30. 30. Mazurek R, Kowalska J, Gąsiorek M, Zadrożny P, Józefowska A, Zaleski T, et al. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere. 2017;168:839-50. https://doi.org/10.1016/j.chemosphere.2016.10.126
  31. 31. Li Z, Shuman LM. Heavy metal movement in metal-contaminated soil profiles. Soil Sci. 1996;161(10):656-66. https://doi.org/10.1097/00010694-199610000-00003
  32. 32. Mason B. Principles of geochemistry. 3rd ed. New York: Wiley; 1966. p. 320.
  33. 33. McLean JE, Bledsoe BE. Behavior of materials in soils: Groundwater issue. Washington (DC): United States Environmental Protection Agency; 1992. Report No.: EPA/540/S-92/018.
  34. 34. Abdu N, Agbenin JO, Buerkert A. Fractionation and mobility of cadmium and zinc in urban vegetable gardens of Kano, Northern Nigeria. Environ Monit Assess. 2012;184:2057-66. https://doi.org/10.1007/s10661-011-2099-2
  35. 35. Gschwend PM, Reynolds MD. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume. J Contam Hydrol. 1987;1:309-27. https://doi.org/10.1016/0169-7722(87)90011-8
  36. 36. Agbenin JO. Lead in Nigerian savanna soils under long-term cultivation. Sci Total Environ. 2002;286:1-14. https://doi.org/10.1016/S0048-9697(01)00917-2
  37. 37. Chakraborti D, Rahman MM, Murrill M, Das R, Patil SG, Sarkar A, et al. Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater. 2013;262:1048-55. https://doi.org/10.1016/j.jhazmat.2012.10.002
  38. 38. Wan Y, Liu J, Zhuang Z, Wang Q, Li H. Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics. 2024;12(1):63. https://doi.org/10.3390/toxics12010063
  39. 39. Liu Z, Zhang X, Wang Y, Wen Y. Distributions and influencing factors of heavy metals in soils from Zhenjiang and Yangzhou, China. Minerals. 2025;15(2):171. https://doi.org/10.3390/min15020171
  40. 40. Gutiérrez M, Collette ZJ, McClanahan AM, Mickus K. Mobility of metals in sediments contaminated with historical mining wastes: Example from the Tri-State Mining District, USA. Soil Syst. 2019;3(1):22. https://doi.org/10.3390/soilsystems3010022
  41. 41. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett. 2010;8:199-216. https://doi.org/10.1007/s10311-010-0297-8
  42. 42. Alloway BJ. Sources of heavy metals and metalloids in soils: Heavy metals in soils, trace metals and metalloids in soils and their bioavailability. Springer. 2013. p. 11-50. https://doi.org/10.1007/978-94-007-4470-7_2
  43. 43. Laghlimi M, Baghdad B, El Hadi H, Bouabdli A. Phytoremediation mechanisms of heavy metal contaminated soils: A review. Open J Ecol. 2015;5(8):375-88. https://doi.org/10.4236/oje.2015.58031
  44. 44. Singh RP, Agrawal M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere. 2007;67(11):2229-40. https://doi.org/10.1016/j.chemosphere.2006.12.019
  45. 45. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002;17(5):517-68. https://doi.org/10.1016/S0883-2927(02)00018-5
  46. 46. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 2019;174:714-27. https://doi.org/10.1016/j.ecoenv.2019.02.068
  47. 47. Kaur R, Sharma S, Kaur H. Heavy metals toxicity and the environment. J Pharmacogn Phytochem. 2019;1:247-9.
  48. 48. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  49. 49. Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MD, Khan MS. Heavy metal induced stress on wheat: Phytotoxicity and microbiological management. RSC Adv. 2020;10(63):38379-403. https://doi.org/10.1039/D0RA05610C

Downloads

Download data is not yet available.