Research Articles
Early Access
Antibiotic sensitivity of phosphate-mobilizing rhizobacteria of wheat rhizosphere
Soil Microbiology and Biotechnology Laboratory, The Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100 128, Uzbekistan
Bio
Soil Microbiology and Biotechnology Laboratory, The Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100 128, Uzbekistan
Soil Microbiology and Biotechnology Laboratory, The Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100 128, Uzbekistan
Soil Microbiology and Biotechnology Laboratory, The Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100 128, Uzbekistan
Department of Biotechnology and Microbiology, National University of Uzbekistan, Tashkent 100 174, Uzbekistan
Probiotics Microbiology and Biotechnology Laboratory, The Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100 128, Uzbekistan
Structural and Functional Genomics Laboratory, Center of Genomics and Bioinformatics of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 111 215, Uzbekistan
Abstract
Antibiotic sensitivity is a serious problem, especially relevant when using bacterial biofertilizers. Many strains of rhizobacteria used as bacterial biofertilizers and biofungicides demonstrate resistance to several antibiotics or contain antibiotic resistance genes. In this study, we investigated the antibiotic sensitivity of 12 strains of phosphate-mobilizing rhizobacteria isolated from the rhizosphere of wheat grown on irrigated lands of the Sirdarya, Tashkent andijan and Kashkadarya regions of Uzbekistan in 2021, belonging to the genera Enterobacter, Rahnella, Bacillus, Pantoea and Pseudomonas, to seven antibiotics of different classes: erythromycin, streptomycin, gentamicin, chloramphenicol, amikacin, tetracycline and cephalexin. Most strains showed high sensitivity to aminoglycosides, chloramphenicol and tetracycline, while some strains showed resistance to erythromycin, streptomycin and cephalexin. Moderate resistance to streptomycin, tetracycline and cephalexin was noted, especially among strains of the genus Enterobacter. Strains of the genus Rahnella showed moderate resistance to streptomycin, gentamicin, tetracycline and cephalexin. Strains of the genus Bacillus showed moderate resistance to chloramphenicol, tetracycline and cephalexin; the diameter of the zones of growth inhibition was 15 mm to 17 mm. The strain P. agglomerans 19 showed moderate resistance only to tetracycline, while remaining sensitive to other antibiotics, but this result requires confirmation through molecular genetic studies in the future. The data revealed are important for assessing the safety of phosphate-mobilising rhizobacteria when used as bacterial fertilisers, taking into account their resistance, to minimise the risk of spreading antibiotic resistance genes (ARGs) in agroecosystems.
References
- 1. Glick BR. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica (Cairo). 2012;963401. https://doi.org/10.6064/2012/963401
- 2. Souza RD, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401–419. https://doi.org/10.1590/S1415-475738420150053
- 3. Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl Soil Ecol. 2019;138:10–18. https://doi.org/10.1016/j.apsoil.2019.02.019
- 4. Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol. 2022;13:999988. https://doi.org/10.3389/fmicb.2022.999988
- 5. Kang Y, Shen M, Xia D, Ye K, Zhao Q, Hu J. Caution of intensified spread of antibiotic resistance genes by inadvertent introduction of beneficial bacteria into soil. Acta Agric Scand Sect B Soil Plant Sci. 2017;67:576–82. https://doi.org/10.1080/09064710.2017.1314548
- 6. Trivedi P, Pandey A, Palni LMS, Bag N, Tamang M. Colonization of rhizosphere of tea by growth promoting bacteria. Int J Tea Sci. 2005;4(1&2):19–25.
- 7. Gamalero E, Glick BR. Mechanisms used by plant growth-promoting bacteria. In: Bacteria in Agrobiology: Plant Nutrient Management. Berlin Heidelberg: Springer; 2011. p. 17–46. https://doi.org/10.1007/978-3-642-21061-7_2
- 8. Cray JA, Bell AN, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; Can microbes behave as weeds? Microb Biotechnol. 2013;6:453–92. https://doi.org/10.1111/1751-7915.12027
- 9. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64:i3–i10. https://doi.org/10.1093/jac/dkp256
- 10. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–63. https://doi.org/10.1128/AAC.00627-10
- 11. Riber L, Poulsen PH, Al-Soud WA, Skov Hansen LB, Bergmark L, Brejnrod A, et al. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiol Ecol. 2014;90:206–24. https://doi.org/10.1111/1574-6941.12403
- 12. Keswani C, Prakash O, Bharti N, Vílchez JI, Sansinenea E, Lally RD, et al. Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ. 2019;690:841–52. https://doi.org/10.1016/j.scitotenv.2019.07.046
- 13. Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, et al. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors and potential exposure risks. Sci Total Environ. 2023;869:161855. https://doi.org/10.1016/j.scitotenv.2023.161855
- 14. Hung W. Prevalence, fate and co-selection of heavy metals and antibiotic resistance genes in urban and agricultural soils [dissertation]. Los Angeles (CA): University of California, Los Angeles; 2020. https://escholarship.org/uc/item/5v4895hs
- 15. Zakiryaeva SI, Shakirov ZS, Khamidova HM, Normuminov AA, Atajanova ShSh, Azatov FR. Search for phosphate-mobilizing bacteria in the soils of Uzbekistan. Universum: Chem Biol. 2021;9(87):5–11. https://7universum.com/ru/nature/archive/item/12238
- 16. Zakiryaeva SI. Study of rhizosphere bacteria ability to mobilize P₂O₅ from hard-to-access soil phosphates. Web Agric J Agric Biol Sci. 2024;2(10):90–5. https://webofjournals.com/index.php/8/article/view/1994
- 17. Shakirov ZS, Mamanazarova KS, Yakubov IT, Zakiryaeva SI, Khamidova KM. Nitrogen-fixing, phosphate–potassium–mobilizing ability of Rahnella bacteria isolated from wheat roots. Regul Mech Biosyst. 2022;13(4):379–384. https://medicine.dp.ua/index.php/med/article/view/838/851
- 18. Zvyagintsev DG. Methods of soil microbiology and biochemistry. Moscow; 1991. 350 p. https://www.scirp.org/reference/referencespapers?referenceid=2564001
- 19. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2020. https://clsi.org
- 20. Topp E, Monteiro SC, Beck A, Coelho BB, Boxall ABA, Duenk PW, et al. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci Total Environ. 2008;396:52–9. https://doi.org/10.1016/j.scitotenv.2008.02.011
- 21. Scaccia N, Vaz-Moreira I, Manaia CM. The risk of transmitting antibiotic resistance through endophytic bacteria. Trends Plant Sci. 2021;26:1213–226. https://doi.org/10.1016/j.tplants.2021.09.001
- 22. Singh RP, Jha PN. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol. 2017;8:1945. https://doi.org/10.3389/fmicb.2017.01945
- 23. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. https://doi.org/10.1038/nrmicro3380
- 24. Steil L, Hoffmann T, Budde I, Völker U, Bremer E. Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol. 2003;185:6358–370. https://doi.org/10.1128/JB.185.21.6358-6370.2003
- 25. Santoyo G, Orozco-Mosqueda MD, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci Technol. 2012;22:855–72. https://doi.org/10.1080/09583157.2012.694413
- 26. Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis. 2013;13:155–65. https://doi.org/10.1016/S1473-3099(12)70317-1
- 27. Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Phosphate solubilizing rhizobacteria isolated from Jujube ziziphus lotus plant stimulate wheat germination rate and seedling growth. Peer J. 2021;9:e11583. https://doi.org/10.7717/peerj.11583
- 28. Mahdi I, Fahsi N, Hafidi M, Benjelloun S, Allaoui A, Biskri L. Rhizospheric phosphate-solubilizing Bacillus atrophaeus GQJK17 S8 increases quinoa seedling growth, withstands heavy metals and mitigates salt stress. Sustainability. 2021;13:3307. https://doi.org/10.3390/su13063307
- 29. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. https://doi.org/10.1128/CMR.00040-09
- 30. Poole K. Pseudomonas aeruginosa: Resistance to the max. Front Microbiol. 2011;2:65. https://doi.org/10.3389/fmicb.2011.00065
- 31. Ma M, Wang C, Ding Y, Li L, Shen D, Jiang X, et al. Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol. 2011;193(1):311–12. https://doi.org/10.1128/JB.01234-10
- 32. Kang Y, Shen M, Wang H, Zhao Q. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol. 2013;59(4):267–77. https://doi.org/10.2323/jgam.59.267
- 33. Ivanova N, Sorokin A anderson I, Galleron N, Candelon B, Kapatral V, et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature. 2003;423(6935):87–91. https://doi.org/10.1038/nature01582
- 34. Joo G-J, Kim Y-M, Lee I-J, Song K-S, Rhee I-K. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett. 2004;26(6):487–91. https://doi.org/10.1023/B:BILE.0000019555.87121.34
- 35. Khan N, Zandi P, Ali S, Mehmood A, Shahid MA, Yang J. Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annuus. Front Microbiol. 2018;9:2507. https://doi.org/10.3389/fmicb.2018.02507
- 36. Smits TH, Rezzonico F, Blom J, Goesmann A, Abelli A, Morelli RK, et al. Draft genome sequence of the commercial biocontrol strain Pantoea agglomerans P10c. Genome Announc. 2015;3(6):e01448–15. https://doi.org/10.1128/genomeA.01448-15
- 37. English M, Coulson T, Horsman S, Patten C. Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol. 2010;108(6):2180–190. https://doi.org/10.1111/j.1365-2672.2009.04620.x
- 38. Ren Y, Ren Y, Zhou Z, Guo X, Li Y, Feng L, et al. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J Bacteriol. 2010;192(9):2463–464. https://doi.org/10.1128/JB.00067-10
Downloads
Download data is not yet available.