Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 3 (2021)

Micromorphological variations of trichomes in the genus Ocimum L.

DOI
https://doi.org/10.14719/pst.2021.8.3.1006
Submitted
21 October 2020
Published
01-07-2021

Abstract

Ocimum L. is an attractive fragrant ornamental plant with medicinal aromatic compounds. The study using digital microscopy revealed the distinct epidermal trichome morphology in five species of Ocimum including O. americanum L., O. basilicum L., O. gratissimum L., O. kilimandscharicum Gurke and O. tenuiflorum L. A distinguished variation in size, shape, type and abundance of trichomes on leaves and stem of all species are described and photographed. Both glandular and non-glandular trichomes scrutinized in all the species in which glandular type comprised capitate and peltate trichomes. On the stem, the longest glandular capitate trichome (GCT) and non-glandular trichome (NGT) were observed in O. tenuiflorum while O. basilicum possessed longest glandular peltate trichome (GPT). In case of foliar trichomes, the longest GCT observed on leaves of O. americanum; and O. basilicum showed the longest GPT and NGT. In the species, the septate or aseptate NGT possessed uni, bi or multicellular base with acute or broad apex. A distinguished variation in the number of cells in stalk and head of GT was observed in the study. Presence of silica bodies in peltate trichome of O. kilimandscharicum was noticed as the characteristic feature. Among the five species, the trichomes were abundant in O. kilimandscharicum; while O. basilicum showed sparse distribution. Trichomes with disrupted cells were also noted in O. americanum. Due to the presence of specific trichome characteristics, the efficient taxonomic key is prepared to identify the taxa at species level.

References

  1. Gorenflot R. Biologie vegetale: plantes superieures; v. 1: Appareil vegetatif.-v. 2: Appareil reproducteur. 1980.
  2. Erdtman G. Pollen morphology and plant taxonomy. Svensk Botanisk Tidskrift. 1945;38:163-68.
  3. Cantino PD, Sanders RW. Subfamilial classification of Labiatae. Systematic Botany. 1986;163-85. https://doi.org/10.2307/2418955
  4. Ascensao L, Marques N, Pais MS. Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Annals of Botany. 1995;75(6):619-26. https://doi.org/10.1006/anbo.1995.1067
  5. Santos Tozin LRD, de Melo Silva SC, Rodrigues TM. Non-glandular trichomes in Lamiaceae and Verbenaceae species: morphological and histochemical features indicate more than physical protection. New Zealand Journal of Botany. 2016;54(4):446-57. https://doi.org/10.1080/0028825X.2016.1205107
  6. Dunkic V, Bezic N, Mileta T. Xeromorphism of trichomes in Lamiaceae species. Acta Botanica Croatica. 2001;60(2):277-83.
  7. Celep F, Kahraman A, Atalay Z, Dogan M. Morphology, anatomy and trichome properties of' Lamium truncatum 'Boiss. (Lamiaceae) and their systematic implications. Australian Journal of Crop Science. 2011;5(2):147.
  8. Jia P, Gao T, Xin H. Changes in structure and histochemistry of glandular trichomes of Thymus quinquecostatus Celak. The Scientific World Journal. 2012;3:187261. https://doi.org/10.1100/2012/187261
  9. Kahraman A, Celep F, Dogan M. Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). South African Journal of Botany. 2010;76(2):187-95. https://doi.org/10.1016/j.sajb.2009.10.003
  10. Manan AA, Taha RM, Mubarak EE, Elias H. In vitro flowering, glandular trichomes ultrastructure and essential oil accumulation in micropropagated Ocimum basilicum L. In vitro Cellular & Developmental Biology-Plant. 2016;52(3):303-14. https://doi.org/10.1007/s11627-016-9755-8
  11. Santana ACMD, Pereira GS, Boaventura CM, Uetenabaro APT, Costa LCDB, Oliveira RAD. Rupture of glandular trichomes in Ocimum gratissimum leaves influences the content of essential oil during the drying method. Revista Brasileira de Farmacognosia. 2014;24(5): 524-30. https://doi.org/10.1016/j.bjp.2014.10.006
  12. Abdel KK. Morphological studies on trichomes of Brassicaceae in Egypt and taxonomic significance. Acta Botanica Croatica. 2005;64(1):57-73.
  13. dos Santos Tozin LR, Rodrigues TM. Glandular trichomes in the tree-basil (Ocimum gratissimum L., Lamiaceae): Morphological features with emphasis on the cytoskeleton. Flora. 2019;259:151459. https://doi.org/10.1016/j.flora.2019.151459
  14. Gang DR, Simon J, Lewinsohn E, Pichersky E. Peltate glandular trichomes of Ocimum basilicum L. (Sweet Basil) contain high levels of enzymes involved in the biosynthesis of phenylpropenes. Journal of Herbs, Spices and Medicinal Plants. 2002;9(2-3):189-95. https://doi.org/10.1300/J044v09n02_27
  15. Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure-function coordination. Journal of Forestry Research. 2020;31(1):1-12. https://doi.org/10.1007/s11676-019-01034-4
  16. Kelsey RG, Shafizadeh F. Glandular trichomes and sesquiterpene lactones of Artemisia nova (Asteraceae). Biochemical Systematics and Ecology. 1980;8(4):371-77. https://doi.org/10.1016/0305-1978(80)90039-3
  17. Paton A, Harley RM, Harley MM. Ocimum: an overview of classification and relationships. In Basil CRC Press. 1999;11-46.
  18. Simon JE, Quinn J, Murray RG. Basil: a source of essential oils. Advances in New Crops. 1990; 484-89.
  19. Pushpangadan P, Bradu BL. Basil. In: Chadha KL, Gupta R (eds.) Advances in Horticulture, Medicinal and Aromatic Plants, Malhotra Pub House, New Delhi, India. 1995;11:628–57.
  20. Sakalauskaite J, Viskelis P, Duchovskis P, Dambrauskiene E, Sakalauskiene S, Samuoliene G, Brazaityte A. Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties. Journal of Food, Agriculture and Environment. 2012;10(3&4):342-46.
  21. Joshi B, Sah GP, Basnet BB, Bhatt MR, Sharma D, Subedi K, Malla R. Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). Journal of Microbiology and Antimicrobials. 2011;3(1):1-7.
  22. An L, Zhou Z, Yan A, Gan Y. Progress on trichome development regulated by phytohormone signaling. Plant Signaling and Behavior. 2011;6(12):1959-1962. https://doi.org/10.4161/psb.6.12.18120
  23. AbdulRahaman AA, Oladele FA. Stomata, trichomes and epidermal cells as diagnostic features in six species of the genus Ocimum L. (Lamiaceae). Nigerian Journal of Botany. 2005;18:214-23.
  24. Goncalves LDA, Azevedo AA, Otoni WC. Characterization and ontogeny of the glandular trichomes of Ocimum selloi Benth.(Lamiaceae). Acta Botanica Brasilica. 2010;24(4): 909-15. https://doi.org/10.1590/S0102-33062010000400005
  25. Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology. 2007;145(3):736-46. https://doi.org/10.1104/pp.107.104521
  26. McLellan T. Correlated evolution of leaf shape and trichomes in Begonia dregei (Begoniaceae). American Journal of Botany. 2005;92(10):1616-23. https://doi.org/10.3732/ajb.92.10.1616
  27. Naidoo Y, Kasim N, Heneidak S, Nicholas A, Naidoo G. Foliar secretory trichomes of Ocimum obovatum (Lamiaceae): micromorphological structure and histochemistry. Plant Systematics and Evolution. 2013;299(5):873-85. https://doi.org/10.1007/s00606-013-0770-5
  28. Chandra M, Kushwaha S, Sangwan NS. Comparative transcriptome analysis to identify putative genes related to trichome development in Ocimum species. Molecular Biology Reports. 2020;1-12. https://doi.org/10.1007/s11033-020-05710-1
  29. Gul S, Ahmad M, Zafar M, Bahadur S, Sultana S, Ashfaq S, Siddiq Z. Foliar epidermal anatomy of Lamiaceae with special emphasis on their trichomes diversity using scanning electron microscopy. Microscopy Research and Technique. 2019;82(3):206-23. https://doi.org/10.1002/jemt.23157
  30. Yerger EH, Grazzini RA, Hesk D, Cox-Foster DL, Craig R, Mumma RO. A rapid method for isolating glandular trichomes. Plant Physiology. 1992;99(1):1-7. https://doi.org/10.1104/pp.99.1.1
  31. Gairola S, Naidoo Y, Bhatt A, Nicholas A. An investigation of the foliar trichomes of Tetradenia riparia (Hochst.) Codd (Lamiaceae): An important medicinal plant of Southern Africa. Flora. 2009;204(4):325-30. https://doi.org/10.1016/j.flora.2008.04.002
  32. Costa LC, Pinto JE, Castro EM, Alves E, Rosal LF, Bertolucci SK, Evangelino TS. Yield and composition of the essential oil of Ocimum selloi Benth. cultivated under colored netting. Journal of Essential Oil Research. 2010;22(1):34-39. https://doi.org/10.1080/10412905.2010.9700260
  33. Martins ER, Casali VWD, Barbosa LCA, Carazza F. Essential oil in the taxonomy of Ocimum selloi Benth. Journal of the Brazilian Chemical Society. 1996;8:29-32. https://doi.org/10.1590/S0103-50531997000100006
  34. Benning C, Xu C, Awai K. Non-vesicular and vesicular lipid trafficking involving plastids. Current Opinion in Plant Biology. 2006;9(3),241-47. https://doi.org/10.1016/j.pbi.2006.03.012
  35. Weryszko-Chmielewska E, Chernetskyy M. Structure of trichomes from the surface of leaves of some species of Kalanchoe Adans. Acta Biologica Cracoviensia Series Botanica. 2005;47(2):15-22.
  36. Svidenko L, Grygorieva O, Vergun O, Hudz N, Sedlackova VH, Simkova J, Brindza J. Characteristic of leaf peltate glandular trichomes and their variability of some Lamiaceae martinov family species. Agrobiodiversity for Improving Nutrition, Health and Life Quality. 2018. https://doi.org/10.15414/agrobiodiversity.2018.2585-8246.124-132
  37. Ascensao L, Mota L, Castro MD. Glandular trichomes on the leaves and flowers of Plectranthus ornatus: B C D A 749 morphology, distribution and histochemistry. Annals of Botany. 1999;84:437-47. https://doi.org/10.1006/anbo.1999.0937
  38. Abe J. Silicon deposition in leaf trichomes of Cucurbitaceae horticultural plants: A short report. American Journal of Plant Sciences. 2019;10(3):486-90. https://doi.org/10.4236/ajps.2019.103034
  39. Katz O, Lev-Yadun S, Bar P. Plasticity and variability in the patterns of phytolith formation in Asteraceae species along a large rainfall gradient in Israel. Flora. 2013; 208(7):438-44. https://doi.org/10.1016/j.flora.2013.07.005
  40. Motomura H, Fujii T, Suzuki M. Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Annals of Botany. 2006;97(4): 513-19. https://doi.org/10.1093/aob/mcl014
  41. Tozin LRDS, Rodrigues TM. Morphology and histochemistry of glandular trichomes in Hyptis villosa Pohl ex Benth. (Lamiaceae) and differential labeling of cytoskeletal elements. Acta Botanica Brasilica. 2017;31(3):330-43. https://doi.org/10.1590/0102-33062016abb0292
  42. Farago PV, de Paula JP, Bittencourt JIM, Zarpellon V, Checchia LEM. Atividade antibacteriana de oleos essenciais de Ocimum selloi Benth. (Lamiaceae). Publicatio UEPG: Ciencias Biological Saude. 2004;10(3):59-63. https://doi.org/10.5212/Publ.Biologicas.v.10i3.0007
  43. Foley RC, Singh KB. Isolation of a Vicia faba metallothionein-like gene: expression in foliar trichomes. Plant Molecular Biology. 1994;26(1):435-44. https://doi.org/10.1007/BF00039552

Downloads

Download data is not yet available.