Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Coconut phytoplasma diseases: Advances in detection and sustainable management strategies

DOI
https://doi.org/10.14719/pst.10074
Submitted
15 June 2025
Published
10-10-2025

Abstract

Coconut palms are affected by a range of diseases, with phytoplasma-associated syndromes such as root wilt, lethal yellowing, lethal decline and Tatipaka disease posing major threats to their productivity worldwide. Phytoplasmas are wall-less, obligate phytopathogenic bacteria that infect the phloem of host plants and are primarily transmitted by phloem-feeding insect vectors belonging to families such as Cicadellidae, Fulgoridae and Psyllidae. These diseases are characterized by symptoms including yellowing, wilting, bronzing and eventual death of affected palms, leading to severe economic losses in coconut-growing regions. The molecular complexity, low titre, uneven distribution of phytoplasmas and similarity of symptoms to other stresses make detection and management particularly challenging. Recent advances have focused on the development of sensitive molecular diagnostic tools, identification of field-tolerant coconut varieties and experimental biotechnological approaches to enhance either pathogen detection or crop resistance. Biological control methods, including the use of beneficial microbes, show promise for integrated disease management. Despite some progress, sustainable and effective control remains elusive, necessitating further research into resistant cultivar development, rapid field diagnosis and innovative management strategies to safeguard global coconut cultivation.

References

  1. 1. Hemmati C, Nikooei M, Al-Sadi AM. Four decades of research on phytoplasma diseases of palms: A review. International Journal of Agriculture and Biology. 2020;24(3):631-44. https://doi.org/10.1201/9781003160472-5
  2. 2. Ramjegathesh R, Rajendran L, Karthikeyan G, Raguchander T. Coconut (Cocos nucifera Linn.) diseases and management strategies. In: Diseases of horticultural crops: diagnosis and management. Apple Academic Press; 2022:73-96.
  3. 3. Rathinavel S, Kavitha R, Surendrakumar A, Saiprasanth R, Suwathiga M. Development and evaluation of a machine vision system for coconut harvesting and collection. Journal of Applied Horticulture. 2025;27(1):132-6. https://doi.org/10.37855/jah.2025.v27i01.25
  4. 4. Cao Y, Trivellone V, Dietrich CH. A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Molecular Phylogenetics and Evolution. 2020;149:106826. https://doi.org/10.1016/j.ympev.2020.106826
  5. 5. De Silva PR, Perera CN, Bahder BW, Attanayake RN. Nested PCR-based rapid detection of phytoplasma leaf wilt disease of coconut in Sri Lanka and systemic movement of the pathogen. Pathogens. 2023;12(2):294. https://doi.org/10.3390/pathogens12020294
  6. 6. Kavitha K, Preetha G, Selvarani A, Hassan NS, Swarnapriya R. Occurrence and distribution of major pests and diseases of coconut during roving survey in Kanyakumari district of Tamil Nadu. Journal of Krishi Vigyan. 2023;11:156-60. https://doi.org/10.5958/2349-4433.2023.00104.6
  7. 7. de Andrade FM, de Assis Pereira T, Souza TP, Guimarães PHS, Martins AD, Schwan RF, et al. Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological Research. 2019;223:120-8. https://doi.org/10.1016/j.micres.2019.04.005
  8. 8. Ramjegathesh R, Rajeswari E, Venkatesan K, Merin B, Parameswarappa MH. Identification and confirmation of hotspot areas and management of root (wilt) disease in coconut. 2019.
  9. 9. Bonnot F, De Franqueville H, Lourenço E. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique. Phytopathology. 2010;100(4):300-12. https://doi.org/10.1094/PHYTO-100-4-0300
  10. 10. Oropeza-Salín C, Sáenz L, Narvaez M, Nic-Matos G, Córdova I, Myrie W, et al. Dealing with lethal yellowing and related diseases in coconut. In: Coconut biotechnology: towards the sustainability of the ‘Tree of Life’. 2020:169-97. https://doi.org/10.1007/978-3-030-44988-9_9
  11. 11. Córdova I, Oropeza C, Harrison N, Ku-Rodríguez S, Puch-Hau C, Narváez M, et al. Simultaneous detection of coconut lethal yellowing phytoplasmas (group 16SrIV) by real-time PCR assays using 16Sr- and GroEL-based TaqMan probes. Journal of Plant Pathology. 2019;101(3):609-19. https://doi.org/10.1007/s42161-019-00249-y
  12. 12. Kumara A, Perera L, Meegahakumbura M, Aratchige N, Fernando L. Identification of putative vectors of weligama coconut leaf wilt disease in Sri Lanka. In: New Horizons in Insect Science: Towards Sustainable Pest Management. Springer; 2015:137-46. https://doi.org/10.1007/978-81-322-2089-3_14
  13. 13. Rodrı́guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 1999;17(4-5):319-39. https://doi.org/10.1016/S0734-9750(99)00014-2
  14. 14. Nair S, Manimekalai R, Rao S, Graduate G. Taqman quantitative PCR for detection of Indian arecanut yellow leaf disease phytoplasma. Phytopath Mollicut. 2015;5(2):113-6. https://doi.org/10.5958/2249-4677.2015.00070.5
  15. 15. Nair S, Manimekalai R. Phytoplasma diseases of plants: molecular diagnostics and way forward. World Journal of Microbiology and Biotechnology. 2021;37(6):102. https://doi.org/10.1007/s11274-021-03061-y
  16. 16. Myrie W, Harrison N, Douglas L, Helmick E, Gore-Francis J, Oropeza C, et al. First report of lethal yellowing disease associated with subgroup 16SrIV-A phytoplasmas in Antigua, West Indies. New Disease Reports. 2014;29(1):12. http://dx.doi.org/10.5197/j.2044-0588.2014.029.012
  17. 17. Bila J, Mondjana A, Samils B, Högberg N, Wilson MR, Santos L. First report of ‘Candidatus Phytoplasma palmicola’ detection in the planthopper Diostrombus mkurangai in Mozambique. Bulletin of Insectology. 2017;70(1):45-8.
  18. 18. Namba S. Molecular and biological properties of phytoplasmas. Proceedings of the Japan Academy, Series B. 2019;95(7):401-18. https://doi.org/10.2183/pjab.95.028
  19. 19. Kwadjo KE, Beugré NDI, Dietrich CH, Kodjo ATT, Diallo HA, Yankey N, et al. Identification of Nedotepa curta Dmitriev as a potential vector of the Côte d’Ivoire lethal yellowing phytoplasma in coconut palms sole or in mixed infection with a ‘Candidatus Phytoplasma asteris’-related strain. Crop Protection. 2018;110:48-56. https://doi.org/10.1016/j.cropro.2017.12.015
  20. 20. Ouattara BWM, Kra KD, Toualy MNY, Kouakou YYFR, Diallo HA. Detection of a new strain of phytoplasma associated with lethal yellowing disease of coconut (Cocos nucifera) in Côte d'Ivoire. 2022.
  21. 21. Marshall R. International committee on systematic bacteriology subcommittee on the taxonomy of Leptospira: minutes of the meetings, 13 and 15 September 1990, Osaka, Japan. International Journal of Systematic and Evolutionary Microbiology. 1992;42(2):330-4. https://doi.org/10.1099/00207713-42-2-330
  22. 22. Liu J, Offei SD, Yoshimoto FK, Scott EE. Pyridine-containing substrate analogs are restricted from accessing the human cytochrome P450 8B1 active site by tryptophan 281. Journal of Biological Chemistry. 2023;299(4):103032. https://doi.org/10.1016/j.jbc.2023.103032
  23. 23. Oshima K, Maejima K, Isobe Y, Endo A, Namba S, Yamaji Y. Molecular mechanisms of plant manipulation by secreting effectors of phytoplasmas. Physiological and Molecular Plant Pathology. 2023;125:102009. https://doi.org/10.1016/j.pmpp.2023.102009
  24. 24. Wang R, Bai B, Li D, Wang J, Huang W, Wu Y, et al. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production—Research progress and outlook. Molecular Plant Pathology. 2024;25(2):e13437. https://doi.org/10.1111/mpp.13437
  25. 25. Debonneville C, Mandelli L, Brodard J, Groux R, Roquis D, Schumpp O. The complete genome of the “Flavescence Dorée” phytoplasma reveals characteristics of low genome plasticity. Biology. 2022;11(7):953. https://doi.org/10.3390/biology11070953
  26. 26. Wei W, Zhao Y. Phytoplasma taxonomy: nomenclature, classification and identification. Biology. 2022;11(8):1119. https://doi.org/10.3390/biology11081119
  27. 27. Lu H, Wilson B, Zhang H, Woruba SB, Feng B, Johnson AC, et al. Detection and identification of Bogia coconut syndrome phytoplasma from seed-associated tissues and seedlings of coconut (Cocos nucifera) and betel nut (Areca catechu). Scientific Reports. 2024;14(1):11542. https://doi.org/10.1038/s41598-024-61916-4
  28. 28. Gurr GM, Johnson AC, Ash GJ, Wilson BA, Ero MM, Pilotti CA, et al. Coconut lethal yellowing diseases: a phytoplasma threat to palms of global economic and social significance. Frontiers in Plant Science. 2016;7:1521. https://doi.org/10.3389/fpls.2016.01521
  29. 29. Narváez M, Nic-Matos G, Oropeza C. In vitro transmission of 16SrIV phytoplasmas to coconut plants by Haplaxius crudus in Yucatan, Mexico. 3 Biotech. 2022;12(1):5. https://doi.org/10.1007/s13205-021-03069-z
  30. 30. Mou D-F, Lee C-C, Hahn PG, Soto N, Humphries AR, Helmick EE, et al. Effects of lethal bronzing disease, palm height and temperature on abundance and monitoring of Haplaxius crudus. Insects. 2020;11(11):748. https://doi.org/10.3390/insects11110748
  31. 31. Lu H, Wilson BA, Ash GJ, Woruba SB, Fletcher MJ, You M, et al. Determining putative vectors of the Bogia coconut syndrome phytoplasma using loop-mediated isothermal amplification of single-insect feeding media. Scientific Reports. 2016;6(1):35801. https://doi.org/10.1038/srep35801
  32. 32. Bianco P, Romanazzi G, Mori N, Myrie W, Bertaccini A. Phytoplasmas: Plant Pathogenic Bacteria—II. Singapore: Springer; 2019.
  33. 33. Ajene IJ, Khamis F, van Asch B, Pietersen G, Rasowo BA, Ekesi S, et al. Habitat suitability and distribution potential of Liberibacter species (‘Candidatus Liberibacter asiaticus’ and ‘Candidatus Liberibacter africanus’) associated with citrus greening disease. Diversity and Distributions. 2020;26(5):575-88. https://doi.org/10.1111/ddi.13051
  34. 34. Dzido J-L, Sánchez R, Dollet M, Julia J, Narvaez M, Fabre S, et al. Haplaxius crudus (Hemiptera: Cixiidae) transmits the lethal yellowing phytoplasmas, 16SrIV, to Pritchardia pacifica Seem. & H. Wendl (Arecaceae) in Yucatan, Mexico. Neotropical Entomology. 2020;49(6):795-805. https://doi.org/10.1007/s13744-020-00799-2
  35. 35. Fernández-Barrera M, Córdova-Lara I, Chan-Rodríguez J, Castillo-Vera A, Blanco-Rodríguez E, Nic-Matos G, et al. Detection of 16SrIV-A phytoplasma DNA in Colpoptera sp. (Hemiptera: Nogodinidae) insects in Yucatan Peninsula, Mexico. Brazilian Journal of Biology. 2022;84:e257470. https://doi.org/10.1590/1519-6984.257470
  36. 36. Aidoo OF, Cunze S, Guimapi RA, Arhin L, Ablormeti FK, Tettey E, et al. Lethal yellowing disease: insights from predicting potential distribution under different climate change scenarios. Journal of Plant Diseases and Protection. 2021;128(5):1313-25. https://doi.org/10.1007/s41348-021-00488-1
  37. 37. Chen Z, Yang X, Xia H, Wu C, Yang J, Dai T. A frontline, rapid, nucleic acid-based Fusarium circinatum detection system using CRISPR/Cas12a combined with recombinase polymerase amplification. Plant Disease. 2023;107(6):1902-10. https://doi.org/10.1094/PDIS-05-22-1234-RE
  38. 38. Krishnakumar V, Babu M, Thomas RJ, Josephrajakumar AP, Hegde V, Chowdappa P. Root (wilt) disease of coconut—Bench to Bunch strategies. ICAR-CPCRI Tech Bull. 2015;91:28.
  39. 39. Moretto C, Cervantes ALL, Batista Filho A, Kupper KC. Integrated control of green mold to reduce chemical treatment in post-harvest citrus fruits. Scientia Horticulturae. 2014;165:433-8. https://doi.org/10.1016/j.scienta.2013.11.019
  40. 40. Indhuja S, Babu M, Gupta A, Gopal M, Mathew J, Thomas R, et al. Screening and characterization of nutrient solubilizing phytobeneficial rhizobacteria from healthy coconut palms in root (wilt) diseased tract of Kerala, India. Journal of Environmental Biology. 2021;42(3):625-35.
  41. 41. Ramjegathesh R, Rajeswari E, Venkatesan K, Merin B, Parameswarappa MH. Identification and confirmation of hotspot areas and management of root (wilt) disease in coconut. 2019.
  42. 42. Nair K, Anil Kumar K, Ramesh Kumar S, Ramamurty V, Lalitha M, Srinivas S, et al. Coconut-growing soils of Kerala: 1. Characteristics and classification. 2018.
  43. 43. Babu M, Thangeswari S, Josephrajkumar A, Krishnakumar V, Karthikeyan A, Selvamani V, et al. First report on the association of ‘Candidatus Phytoplasma asteris’ with lethal wilt disease of coconut (Cocos nucifera L.) in India. Journal of General Plant Pathology. 2021;87(1):16-23. https://doi.org/10.1007/s10327-020-00970-y
  44. 44. Thangeswari S, Karthikeyan A, Merin Babu MB. A new lethal disease of coconut with unknown etiology in Tamil Nadu. 2018.
  45. 45. Solomon J, Geetha L. Phytoplasma diseases of coconut in India-root (wilt) and tatipaka diseases. CORD. 2004;20(1):34. https://doi.org/10.37833/cord.v20i01.384
  46. 46. Perera S, Herath H, Wijesekera H, Subhathma W, Weerakkody W, editors. Evaluation of coconut germplasm in Weligama and Matara area of the Southern Province of Sri Lanka for resistance to Weligama coconut leaf wilt disease. Cocos. 2016. https://doi.org/10.4038/cocos.v21i0.5803
  47. 47. Kanatiwela-de Silva C, Damayanthi M, de Silva N, Wijesekera R, Dickinson M, Weerakoon D, et al. Immunological detection of the Weligama coconut leaf wilt disease associated phytoplasma: Development and validation of a polyclonal antibody based indirect ELISA. PLoS One. 2019;14(4):e0214983. https://doi.org/10.1371/journal.pone.0214983
  48. 48. Pilet F, Rakotoarisoa E, Rakotomalala M, Sisteron S, Razakamanana HN, Rabemiafara L. First report of strains related to the phytoplasma associated with Tanzanian lethal decline on Cocos nucifera on the western coast of Madagascar. Plant Disease. 2021;105(12):4146. https://doi.org/10.1094/PDIS-03-21-0623-PDN
  49. 49. Aidoo OF, Cunze S, Guimapi R, Arhin L, Ablormeti FK, Tettey E, et al. Coconut lethal yellowing-like diseases: Insights from predicting potential distribution under different climate change scenarios. 2020. https://doi.org/10.21203/rs.3.rs-133560/v1
  50. 50. Cordova I, Oropeza C, Almeyda H, Harrison N. First report of a phytoplasma-associated leaf yellowing syndrome of palma jipi plants in southern Mexico. Plant Disease. 2000;84(7):807-. https://doi.org/10.1094/PDIS.2000.84.7.807A
  51. 51. Tatineni S, Sagaram US, Gowda S, Robertson CJ, Dawson WO, Iwanami T, et al. In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology. 2008;98(5):592-9. https://doi.org/10.1094/PHYTO-98-5-0592
  52. 52. Yankey EN, Aidoo OF, Sossah FL. A critical review of Cape Saint Paul wilt disease: A devastating phytoplasma-associated infection affecting coconut trees in Ghana. Crop Protection. 2024;184:106830. https://doi.org/10.1016/j.cropro.2024.106830
  53. 53. McAfee A, French SK, Wizenberg SB, Newburn LR, Tsvetkov N, Higo H, et al. Higher prevalence of sacbrood virus in Apis mellifera (Hymenoptera: Apidae) colonies after pollinating highbush blueberries (vol 117, toae119, 2024). Journal of Economic Entomology. 2024;117(5):2200-. https://doi.org/10.1093/jee/toae119
  54. 54. Dollet M, Fabre S, Beaumont M, Barnabé C, Namaliu Y, Kembu A, et al. The phytoplasma associated with Bogia coconut syndrome in Papua New Guinea is a new phytoplasma in the group of the lethal yellowing syndromes (LYTS) of coconut and other palms. Tropical Plant Pathology. 2022;47(4):530-52. https://doi.org/10.1007/s40858-022-00494-0
  55. 55. Ekhorutomwen O, Udoh M, Aghayedo C, Iserhienrhien A. Developing molecular tools capable of identifying, characterizing and distinguishing phytoplasma strains responsible for the emerging lethal yellowing disease (LYD) of coconut in Nigeria. International Journal of Biotechnology and Food Science. 2019;7(4):56-64. https://doi.org/10.33495/ijbfs_v7i4.19.108
  56. 56. Osagie IJ, Ojomo EE, Pilet F. Occurrence of Awka wilt disease of coconut in Nigeria for one century. Phytopathogenic Mollicutes. 2015;5(1s):S61-2.
  57. 57. Nair S, Manimekalai R, Rao S, Graduate G. Taqman quantitative PCR for detection of Indian arecanut yellow leaf disease phytoplasma. Phytopathogenic Mollicutes. 2015;5(2):113-6.
  58. 58. Musetti R, Buxa SV. DAPI and confocal laser-scanning microscopy for in vivo imaging of phytoplasmas. In: Phytoplasmas: Methods and Protocols. Springer; 2018:301-6. https://doi.org/10.1007/978-1-4939-8837-2_22
  59. 59. Ali AI, Elshazly AM, Metwaly AEA, Darwish S. Detection and genetic fingerprint of lethal yellowing disease associated with candidates phytoplasma palma in Egypt. Egyptian International Journal of Palms. 2021;1(2):10-22. https://doi.org/10.21608/esjp.2021.247977
  60. 60. Gamage SW, Chau NNB, Quoc NB, Abeysinghe S, Tiwari AK. Novel methods of phytoplasma detection of phytoplasma in Asian countries. In: Characterization, Epidemiology and Management. Elsevier; 2023:1-19. https://doi.org/10.1016/B978-0-323-91671-4.00009-5
  61. 61. Doi Y, Teranaka M, Yora K, Asuyama H. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology. 1967;33(4):259-66. https://doi.org/10.3186/jjphytopath.33.259
  62. 62. Tymon A, Jones P, Harrison N. Phylogenetic relationships of coconut phytoplasmas and the development of specific oligonucleotide PCR primers. Annals of Applied Biology. 1998;132(3):437-52. https://doi.org/10.1111/j.1744-7348.1998.tb05220.x
  63. 63. Oliveira GK, Soares NR, Costa ZP, Almeida CB, Machado RM, Mesquita AT, et al. Meiotic abnormalities in sugarcane (Saccharum spp.) and parental species: evidence for peri- and paracentric inversions. Annals of Applied Biology. 2023;183(3):271-86. https://doi.org/10.1111/aab.12855
  64. 64. Morcia C, Ghizzoni R, Delogu C, Andreani L, Carnevali P, Terzi V. Digital PCR: What relevance to plant studies? Biology. 2020;9(12):433. https://doi.org/10.3390/biology9120433
  65. 65. Tiwari AK, Tripathi S, Singh J, Kirdat K, Reddy MG, Suryanarayana V, et al. The diversity, distribution and status of phytoplasma diseases in India. In: Diversity, Distribution and Current Status. Elsevier; 2023:281-320. https://doi.org/10.1016/B978-0-323-91896-1.00001-5
  66. 66. Abou-Jawdah Y, Aknadibossian V, Jawhari M, Tawidian P, Abrahamian P. Real-time PCR protocol for phytoplasma detection and quantification. In: Phytoplasmas: Methods and Protocols. Springer; 2018:117-30. https://doi.org/10.1007/978-1-4939-8837-2_9
  67. 67. Morton A, Davies DL, Blomquist CL, Barbara DJ. Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology. 2003;4(2):109-14. https://doi.org/10.1046/j.1364-3703.2003.00155.x
  68. 68. Goulet KM, Saville BJ. Carbon acquisition and metabolism changes during fungal biotrophic plant pathogenesis: Insights from Ustilago maydis. Canadian Journal of Plant Pathology. 2017;39(3):247-66. https://doi.org/10.1080/07060661.2017.1354330
  69. 69. Soto N, Helmick EE, Harrison NA, Bahder BW. Genetic variability of palm lethal decline phytoplasmas in the Caribbean Basin and Florida, USA, based on a multilocus analysis. Phytopathology. 2021;111(12):2203-12. https://doi.org/10.1094/PHYTO-04-21-0130-R
  70. 70. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000;28(12):e63. https://doi.org/10.1093/nar/28.12.e63
  71. 71. Aljafer N, Rihan H. Diagnostic techniques for early detection of phytoplasma diseases. Syrian Journal for Science and Innovation. 2023;1(3).
  72. 72. Boopathi N, Karthikeyan G, Raveendran M, Johnson I, Maruthasalam S, Srinivasan T, et al. Characterization of phytoplasma associated with wilt disease in coconut and approaches for its sensitive diagnostics. Journal of Microbiological Methods. 2025;228:107072. https://doi.org/10.1016/j.mimet.2024.107072
  73. 73. Chelal JK. Modeling the interactions between host dynamics and epidemics of foliar diseases in three plant pathosystems. 2014.
  74. 74. Rathinavel S, Kavitha R, Surendrakumar A. Advances in coconut mechanization. 2023.
  75. 75. Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, et al. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One. 2014;9(8):e104259. https://doi.org/10.1371/journal.pone.0104259
  76. 76. Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, et al. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One. 2014;9(8):e104259. https://doi.org/10.1371/journal.pone.0104259
  77. 77. Pillai NG, Chowdappa P, Solomon J, Mathew J. Remission of symptoms of root (wilt) disease of coconut injected with oxytetracycline-HCl. 1991.
  78. 78. Ramjegathesh R, Karthikeyan G, Rajendran L, Johnson I, Raguchander T, Samiyappan R. Root (wilt) disease of coconut palms in South Asia–an overview. Archives of Phytopathology and Plant Protection. 2012;45(20):2485-93. https://doi.org/10.1080/03235408.2012.729772

Downloads

Download data is not yet available.