Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Pollen-based screening of coconut (Cocos nucifera L.) varieties for tolerance to high temperature and drought stress

DOI
https://doi.org/10.14719/pst.10084
Submitted
16 June 2025
Published
08-01-2026

Abstract

Cocos nucifera L. is a vital crop in South Asia, particularly in coastal areas vulnerable to climate change, with heat and drought stress significantly impacting its production. The reproductive stage of coconut is more sensitive to these stresses. Recent studies have employed in vitro pollen screening to assess heat tolerance. Osmotic adjustment (OA) has been recognized as a key factor in drought tolerance by maintaining turgor pressure. This study examined the effects of temperature on pollen germination (PG) and tube growth across eight coconut hybrids, with temperatures ranging from 15 to 50 ºC. The hybrids showed significant differences in cardinal temperatures (Tmin, Topt, Tmax) for PG and tube growth. This work also assessed osmotic stress responses using polyethylene glycol (PEG) solutions in the presence or absence of an osmolyte potassium chloride (KCl), revealing differences in intrinsic OA and osmolyte-induced OA. The Chowghat Orange Dwarf (COD) x Andaman Ordinary Tall (ADOT) hybrid was found to be the most heat tolerant. These findings provide valuable insights into coconut hybrid tolerance to climate change, highlighting the potential for combining intrinsic and osmolyte-induced OA to enhance drought resistance.

References

  1. 1. Intergovernmental panel on climate change. Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA, editors. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014. p. 151.
  2. 2. Maheswarappa HP, Krishnakumar V. An overview on water management in coconut (Cocos nucifera). Indian J Agron. 2019;64(4):431–9. https://doi.org/10.59797/ija.v64i4.5298
  3. 3. Arumugam T, Hatta MAM. Improving coconut using modern breeding technologies: challenges and opportunities. Plants. 2022;11(24):3414. https://doi.org/10.3390/plants11243414
  4. 4. Kumarathunge DP, Weerasinghe LK, Samarasinghe RK, Geekiyanage N. The temperature optima for pollen germination and pollen tube growth of coconut (Cocos nucifera L.) strongly depend on the growth temperature. Exp Agric. 2024;60:e2. https://doi.org/10.1017/S0014479723000248
  5. 5. Ranasinghe CS, Waidyarathna KP, Pradeep APC, Meneripitiya MSK. Approach to screen coconut varieties for high temperature tolerance by in-vitro pollen germination. Cocos. 2012;19(1):1-6.
  6. 6. Liu W, Yin T, Zhao Y, Wang X, Wang K, Shen Y, et al. Effects of high temperature on rice grain development and quality formation based on proteomics comparative analysis under field warming. Front Plant Sci. 2021;12:768843. https://doi.org/10.3389/fpls.2021.746180
  7. 7. Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2006;2(7):106. https://doi.org/10.1371/journal.pgen.0020106
  8. 8. Hedhly A, Hormaza JI, Herrero M. The effect of temperature on pollen germination, pollen tube growth and stigmatic receptivity in peach. Plant Biol (Stuttg). 2005;7(5):476–83.
  9. 9. Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Wolukau JN, Ercisli S. Response of in vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to temperature, polyamines and polyamine synthesis inhibitor. Biochem Syst Ecol. 2011;39(4–6):749–57.
  10. 10. Kakani VG, Prasad PVV, Craufurd PQ, Wheeler TR. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 2002;25:1651–61.
  11. 11. Lohani N, Jain D, Singh MB, Bhalla PL. Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front Plant Sci. 2020;11:3. https://doi.org/10.3389/fpls.2020.00003
  12. 12. Dane F, Hunter AG, Chambliss OL. Fruit set, pollen fertility and combining ability of selected tomato genotypes under high temperature field conditions. J Am Soc Hortic Sci. 1991;116(5):906–10.
  13. 13. Zhao C, Siddique AB, Guo C, Shabala S, Li C, Chen Z, et al. A high throughput protocol for testing heat-stress tolerance in pollen. Abiotech. 2025;6(1):63–71.
  14. 14. Chaudhary S, Devi P, Bhardwaj A, Jha UC, Sharma KD, Prasad PV, et al. Identification and characterization of contrasting genotypes/cultivars for developing heat tolerance in agricultural crops: current status and prospects. Front Plant Sci. 2020;11:587264. https://doi.org/10. 10.3389/fpls.2020.587264
  15. 15. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. 2012;125(4):625–45.
  16. 16. Blum A. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 1996;20(1):135–48.
  17. 17. Blum A. Plant breeding for stress environments. Boca Raton: CRC Press; 1998. p. 54–63.
  18. 18. Zhang J, Nguyen HT, Blum A. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot. 1999;50(322):291–302.
  19. 19. Morgan JM. Pollen grain expression of a gene controlling differences in osmoregulation in wheat leaves: a simple breeding method. Aust J Agric Res. 1999;50:953–62.
  20. 20. Moud AAM, Yamagishi T. Application of project pollen area response to drought stress to determine osmoregulation capability of different wheat (Triticum aestivum L.) cultivars. Int J Agric Biol. 2005;7(4):604–5.
  21. 21. Karun Anitha, Sajini KK, Niral V, Amarnath CH, Remya P, Rajesh MK, et al. Coconut (Cocos nucifera L.) pollen cryopreservation. Cryo Lett. 2014;35(5):407–17.
  22. 22. Patil BS, Ravikumar RL. Osmotic adjustment in pollen grains: a measure of drought adaptation in sorghum. Curr Sci. 2011;100(3):377–82.
  23. 23. Kovach WL. MVSP-a multivariate statistical package for Windows, ver. 3.1. Pentraeth, Wales: Kovach Computing Services; 1999.
  24. 24. SAS Institute Inc. SAS Version 9.3. SAS Institute Inc., Cary, North Carolina, USA; 2011.
  25. 25. Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D. Differences in in-vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot. 2005;96:59-67. https://doi.org/10.1093/aob/mci149
  26. 26. Chaturvedi VK, Hebbar KB, Chandran KP, Regi JT, Shareefa M, Nampoothiri CK, Jinu Sivadasan. Influence of temperature, germination duration and cultivar on in-vitro pollen germination and pollen tube growth in coconut (Cocos nucifera L.). Int J Adv Res. 2017;5(5):544-51.
  27. 27. Reddy KR, Kakani VG. Screening Capsicum species of different origin for high temperature tolerance by in-vitro pollen germination and pollen tube length. Sci Hortic. 2007;112:130-5.
  28. 28. Gajanayake B, Trader BW, Reddy R, Harkess RL. Screening ornamental pepper cultivars for temperature tolerance using pollen and physiological parameters. Hortic Sci. 2011;46(6):878-84.
  29. 29. Djanaguiraman M, Prasad PVV, Murugan M, Perumal R, Reddy UK. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ Exp Bot. 2014;100:43-54.
  30. 30. Armendariz BHC, Oropeza C, Chan JL, Maust B, Torres N, Aguilar CD, Sáenz L. Pollen fertility and female flower anatomy of micropropagated coconut palms. Revista Fitotécnica Mexicana. 2006;29(4):373-8.
  31. 31. Burke JJ, Velten J, Oliver MJ. In vitro analysis of cotton pollen germination. Agron J. 2004;96:359-68.
  32. 32. Rajagopal V, Kasturibai KV, Voleti SR. Screening of coconut genotypes for drought tolerance. Oleagineux. 1990;45(5):215-23.
  33. 33. Snidder JL, Oosterhuis DM, Loka DA, Kawakami EM. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J Plant Physiol. 2011;168:1168-75. https://doi.org/10.1016/j.jplph.2011.01.010
  34. 34. Hazra P, Ansary SH, Dutta AK, Balacheva E, Atanassova B. Breeding tomato tolerant to high temperature stress. Acta Hortic. 2009;830:241-8.
  35. 35. Abdul-Baki AA. Tolerance of tomato cultivars and selected germplasm to heat stress. J Am Soc Hortic Sci. 1991;116(6):1113-6.
  36. 36. Firon N, Shaked R, Peet M, Pharr DM, Zamski E, Rosenfeld K, et al. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress condition. Sci Hortic. 2006;109:212-7.
  37. 37. Paupière MJ, van Haperen P, Rieu I, Visser RG, Tikunov YM, Bovy AG. Screening for pollen tolerance to high temperatures in tomato. Euphytica. 2017;213:130. https://doi.org/10.1007/s10681-017-1927-z
  38. 38. Hormaza I, Herrero M. Male gametophytic selection as a plant breeding tool. Sci Hortic. 1992;65(4):321-33.
  39. 39. Ceccarelli S, Grando S. Drought as a challenge for the plant breeder. Plant Growth Regul. 1996;20:149-55.
  40. 40. Babu RC, Pathan SM, Blum A, Nguyen HT. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sci. 1999;39(1):150-8.
  41. 41. Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40(1):4-10. https://doi.org/10.1111/pce.12800
  42. 42. Pawar VV, Lokhande PK, Dalvi US, Awari VR, Kale AA, Chimote VP, Naik RM. Effect of osmotic stress on osmolyte accumulation and ammonia assimilating enzymes in chickpea cultivars. Ind J Plant Physiol. 2015;20:276-80. https://doi.org/10.1007/s40502-015-0159-2
  43. 43. Bănică C, Petcu E, Giura A, Săulescu NN. Relationship between genetic differences in the capacity of osmotic adjustment and other physiological measures of drought resistance in winter wheat (Triticum aestivum L.). Rom Agric Res. 2008;25:7-11.
  44. 44. Ravikumar RL, Patil BS, Salimath PM. Drought tolerance in sorghum by pollen selection using osmotic stress. Euphytica. 2003;133:371-6.
  45. 45. Chimenti CA, Pearson J, Hall AJ. Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res. 2002;75(2-3):235-46.
  46. 46. Moinuddin, Khanna-Chopra R. Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci. 2004;44:449-55. https://doi.org/10.2135/cropsci2004.4490
  47. 47. Gonzalez A, Martin I, Ayerbe L. Yield and osmotic adjustment capacity of barley under terminal water-stress conditions. J Agron Crop Sci. 2008;194(2):81-91.
  48. 48. David M. Osmotic adjustment capacity and cuticular transpiration in several wheat cultivars cultivated in Algeria. Rom Agric Res. 2009;26:29-33.
  49. 49. Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. 2017;8:69. https://doi.org/10.3389/fpls.2017.00069
  50. 50. Morgan JM, Tan MK. Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol. 1996;23:803–6.
  51. 51. Clarke HJ, Khan TN, Siddique KHM. Pollen selection for chilling tolerance at hybridisation leads to improved Cicer arietinum cultivars. Euphytica. 2004;139:65–74. https://doi.org/10.1007/s10681-004-2466-y
  52. 52. Totsky IV, Lyakh VA. Pollen selection for drought tolerance in Helianthus annuus. Helia. 2015;38(63):211–20. https://doi.org/10.1515/helia-2015-0012
  53. 53. Hormaza I, Herrero M. Male gametophytic selection as a plant breeding tool. Sci Hortic. 1992;65(4):321–33.

Downloads

Download data is not yet available.