Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Genetic diversity and trait correlation analysis among guava (Psidium guajava L.) parents and their F1s differing in pulp color

DOI
https://doi.org/10.14719/pst.10099
Submitted
18 June 2025
Published
09-01-2026

Abstract

Guava (Psidium guajava L.) is popularly known as ‘Super Fruit’ and ‘Apple of the Tropics’ due to its nutritive richness. The pulp color of the guava fruit is associated with its pigment composition. In the present study, twenty-two guava hybrids and their 5 parental genotypes were evaluated for various fruit quality-related traits. The fruit weight (FW), fruit length (FL), fruit width (WF), pulp thickness (PT), seed core diameter (SCD) and FL/width ratio in guava hybrids varied from 78.93-207.10 g, 49.66-83.95 mm, 50.07-73.08 mm, 9.58-18.97 mm, 17.46-44.95 mm and 0.83-1.30, respectively. Total soluble solids (TSS), ascorbic acid (ASC) content, lycopene (LYC) content, total anthocyanins (TAN) and total carotenoids (TCR) in the hybrid fruits ranged from 10.17-18.80 oB, 143.79-275.99 mg/100 g, 0.17-9.51 mg 100 g-1, 0.01-4.61 mg 100 g-1and 0.16-2.49 mg 100 g-1, respectively. In general, white-pulped genotypes had higher ASC content than the pink/red pulped ones. Pulp-color-related traits, viz., LYC content, TCR and TAN, showed high heritability (H) and mean genetic advance (GA). Correlation analysis revealed that LYC content was positively correlated with TCR. The observed phenotypic coefficient of variation (PCV) for all traits exceeded the respective genotypic coefficient of variation (GCV), indicating genetic diversity among the studied guava genotypes. Cluster analysis differentiated guava genotypes into distinct clusters based on pulp color as well as other fruit-related traits. The hybrids, red/pink pulp: ‘HSU/SH-16-8-2’, ‘HSU/SH-16-8-3’, ‘PPT/HSU-16-9-16’ and white pulp: ‘HSU/SH-16-8-18’, ‘SH/BG-14-1-2’, excelled for fruit-related traits, having potential to be utilized in future breeding programs.

References

  1. 1. Hassimotto NM, Genovese MI, Lajolo FM. Antioxidant activity of dietary fruits, vegetables and commercial frozen fruit pulps. J Agric Food Chem. 2005;53:2928-35. https://doi.org/10.1021/jf047894h
  2. 2. Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, et al. Vitamin C—sources, physiological role, kinetics, deficiency, use, toxicity and determination. Nutrients. 2021;13(2):615. https://doi.org/10.3390/nu13020615
  3. 3. Guavas, common, raw. U.S. Department of Agriculture, FoodData Central [Internet]. [cited 2025 Dec 5]. https://fdc.nal.usda.gov/food-details/173044/nutrients
  4. 4. Ankad H, Dhillon A, Thakre M, Senapati R, Kumar R, Nayan Deepak G, et al. Breeding for pulp colour in guava: current status and opportunities. J Hortic Sci Biotechnol. 2024;99(2):130-45. https://doi.org/10.1080/14620316.2023.2251995
  5. 5. Nimisha S, Kherwar D, Ajay KM, Singh B, Usha K. Molecular breeding to improve guava (Psidium guajava L.): current status and future prospective. Sci Hortic. 2013;164:578-88. https://doi.org/10.1016/j.scienta.2013.10.017
  6. 6. Thaipong K, Boonprakob U. Genetic and environmental variance components in guava fruit qualities. Sci Hortic. 2005;104(1):37-47. https://doi.org/10.1016/j.scienta.2004.07.008
  7. 7. Padilla-Ramirez JS, Gonzalez-Gaona E. Collection and characterization of Mexican guava (Psidium guajava L.) germplasm. In: II International Symposium on Guava and other Myrtaceae. 2010;849:49-54. https://doi.org/10.17660/ActaHortic.2010.849.4
  8. 8. Nakasone HY, Paul RE. Guava. In: Nakasone H, Paul RE, editors. Tropical fruits. CAB International; 1998. p. 149-72.
  9. 9. Porat R, Tietel Z, Zippori I, Dag A. Aroma volatile compositions of high- and low-aromatic guava varieties. J Sci Food Agric. 2011;91(15):2794-8. https://doi.org/10.1002/jsfa.4523
  10. 10. Dinesh MR, Vasugi C. Guava improvement in India and future needs. J Hortic Sci. 2010;5(2):94-108. https://doi.org/10.24154/jhs.v5i2.454
  11. 11. Rodriguez MNN, Fermin GA, Valdes-Infante J, Velasquezi B, Rivero D, Martinez F, et al. Illustrated descriptors for guava (Psidium guajava). Acta Hortic. 2010;849:103-10. https://doi.org/10.17660/ActaHortic.2010.849.11
  12. 12. AOAC. Official method 967.21. Ascorbic acid in vitamin preparations and juices. Rockville (MD): AOAC International; 2000.
  13. 13. Ranganna S. Handbook of analysis and quality control for fruit and vegetable products. New York (NY): McGraw-Hill Education; 1986.
  14. 14. Anthon G, Barett D. Standardization of a rapid spectrophotometric method for lycopene analysis. Acta Hortic. 2007;758:111-28. https://doi.org/10.17660/ActaHortic.2007.758.12
  15. 15. Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 1968;33(1):72-7. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  16. 16. Sadler G, Davis J, Dezman D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J Food Sci. 1990;55:1460-4. https://doi.org/10.1111/j.1365-2621.1990.tb03958.x
  17. 17. Devarajan R, Jayaraman JK, Somasundaram SM, Ragupathy S, Raman P, Sathiamoorthy K, et al. Genetic diversity in fresh fruit pulp mineral profile of 100 Indian Musa accessions. Food Chem. 2021;361:130080. https://doi.org/10.1016/j.foodchem.2021.130080
  18. 18. Phadnis NA. Improvement of guava (Psidium guajava L.) by selection in Maharashtra. Indian J Hortic. 1970;27:99-105.
  19. 19. Rodríguez NN, Valdés J, Rodríguez JA, Velásquez JB, Rivero D, Martínez F, et al. Genetic resources and breeding of guava (Psidium guajava L.) in Cuba. Biotecnol Apl. 2010;27(3):238-40.
  20. 20. Pandey D, Pandey AK, Yadav SK. Evaluation of newly developed guava cultivars and selections under Lucknow conditions. Indian J Hortic. 2016;73(3):334-8. https://doi.org/10.5958/0974-0112.2016.00073.6
  21. 21. Nagar PK, Satodiya BN, Prajapati DG, Nagar SK, Patel KV. Assessment of genetic variability and morphological screening of guava (Psidium guajava L.) hybrids. J Pharm Innov. 2018;7:35-40.
  22. 22. Rajore M, Kanwar J, Rathore GPS, Kachouli B. Evaluation of guava (Psidium guajava L.) cultivars for morphological, yield and quality attributes under Malwa plateau conditions. J Pharmacogn Phytochem. 2021;10(2):483-5.
  23. 23. Shiva B, Nagaraja A, Srivastav M, Kumari S, Goswami AK, Singh R, et al. Characterization of guava (Psidium guajava) germplasm based on leaf and fruit parameters. Indian J Agric Sci. 2017;87(5):634-8. https://doi.org/10.56093/ijas.v87i5.70172
  24. 24. Singh A, Panwar NR, Meghwal PR, Khapte PS, Berwal MK. Bioactive compositions in guava (Psidium guajava) at different stages of maturation in arid conditions. Indian J Agric Sci. 2019;89:1797-801. https://doi.org/10.56093/ijas.v89i11.95292
  25. 25. Thakre M, Asrey R, Singh A, Ray M, Jha SK, Kumar P, et al. Genetic diversity study of guava (Psidium guajava) for pink pulp and soft seededness. Indian J Agric Sci. 2020;90:1149-54. https://doi.org/10.56093/ijas.v90i6.104788
  26. 26. Gangappa ND, Singh C, Verma MK, Thakre M, Sevanthi AM, Singh R, et al. Assessing the genetic diversity of guava germplasm characterized by morpho-biochemical traits. Front Nutr. 2022;9:1017680. https://doi.org/10.3389/fnut.2022.1017680
  27. 27. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants. 2022;11(10):1993. https://doi.org/10.3390/antiox11101993
  28. 28. Verma VK, Rymbai H, Deshmukh NA, Bhattacharjee B, Jha AK, Patel RK, et al. Genetic diversity and stability analysis of the improved cultivars of guava and their related species. Sci Hortic. 2024;333:113260. https://doi.org/10.1016/j.scienta.2024.113260
  29. 29. Ruehle GD. The common guava—a neglected fruit with a promising future. Econ Bot. 1948;2:306-25.
  30. 30. Pommer CV, Murakami K. Breeding guava (Psidium guajava L.). In: Breeding plantation tree crops: tropical species. Springer; 2009. p. 83-120. https://doi.org/10.1007/978-0-387-71201-7_3
  31. 31. Thakre M, Hanamant S, Ramkumar MK, Senapati R, Rudra SG, Saha S, et al. Pigment composition analysis of fruit pulp in the recombinant progenies reveals the polygenic nature of pulp color inheritance in guava (Psidium guajava L.). Tree Genet Genomes. 2023;19(2):20. https://doi.org/10.1007/s11295-023-01595-w
  32. 32. Przybylska S. Lycopene - a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol. 2020;55(1):11-32. https://doi.org/10.1111/ijfs.14260
  33. 33. Khan UM, Sevindik M, Zarrabi A, Nami M, Ozdemir B, Kaplan DN, et al. Lycopene: food sources, biological activities and human health benefits. Oxid Med Cell Longev. 2021;2021:2713511. https://doi.org/10.1155/2021/2713511
  34. 34. Mondragón-Jacobo C, Toriz-Ahumada LM, Guzman-Maldonado H. Generation of pink-fleshed guavas to diversify commercial production in central Mexico. In: II International Symposium on Guava and other Myrtaceae. 2008;849:333-40. https://doi.org/10.17660/ActaHortic.2010.849.39
  35. 35. Kumari P, Mankar A, Karuna K, Homa F, Meiramkulova K, Siddiqui MW. Mineral composition, pigments and postharvest quality of guava cultivars commercially grown in India. J Agric Food Res. 2020;2:100061. https://doi.org/10.1016/j.jafr.2020.100061
  36. 36. Shukla S, Kushwaha R, Singh M, Saroj R, Puranik V, Agarwal R, et al. Quantification of bioactive compounds in guava at different ripening stages. Food Res. 2021;5(3):183-9. https://doi.org/10.26656/fr.2017.5(3).554
  37. 37. Senapati R. Understanding the basis of pulp color in black guava (Psidium guajava L.) [Master’s thesis]. New Delhi: Indian Agricultural Research Institute; 2021.
  38. 38. Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, et al. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv. 2022;61:108033. https://doi.org/10.1016/j.biotechadv.2022.108033
  39. 39. Dalla Nora C, Jablonski A, Rios ADO, Hertz PF, DeJong EV, Flôres SH. The characterisation and profile of the bioactive compounds in red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens (O. Berg) D. Legrand). Int J Food Sci Technol. 2014;49(8):1842-9. https://doi.org/10.1111/ijfs.12493
  40. 40. Flores G, Wu SB, Negrin A, Kennelly EJ. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015;170:327-35. https://doi.org/10.1016/j.foodchem.2014.08.076
  41. 41. Prasanna V, Prabha TN, Tharanathan RN. Fruit ripening phenomena-an overview. Crit Rev Food Sci Nutr. 2007;47(1):1-19. https://doi.org/10.1080/10408390600976841
  42. 42. Gomes FR, Silveira KM, Marques CDR, Ferreira BA, Barros ÂL, Salazar AH, et al. Correlations between physical and chemical characteristics of Cortibel guava (Psidium guajava L.) fruits grown in the Brazilian Cerrado. Rev Fac Cienc. 2023;55(1):10-6. https://doi.org/10.48162/rev.39.091
  43. 43. Sankaran M, Dinesh MR, Ravishankar KV. Classical genetics and breeding. In: Kole C, editor. The mango genome. Springer; 2021. p. 111-30. https://doi.org/10.1007/978-3-030-47829-2_7
  44. 44. Mishra PK, Ram RB, Kumar N. Genetic variability, heritability and genetic advance in strawberry (Fragaria × ananassa Duch.). Turk J Agric. 2015;39(3):451-8. https://doi.org/10.3906/tar-1408-99
  45. 45. Rajae Y, Najat H, Mohamed I, Tarik A, Ennacir H, Adnane H, et al. Study of genetic variability, heritability and repeatability for fruit quality characters in Citrus sinensis. Plant Cell Biotechnol Mol Biol. 2019;20:860-8.
  46. 46. Raghava M, Tiwari JP. Genetic variability and correlation analysis in guava. Indian J Hortic. 2008;65(3):263-70.
  47. 47. Dinesh M, Bharathi K, Vasugi C, Veena GL, Ravishankar KV, Nischita P. Inheritance studies and validation of hybridity in guava (Psidium guajava). Indian J Agric Sci. 2017;87:42-5. https://doi.org/10.56093/ijas.v87i1.67007
  48. 48. Paras K, Kaur K, Kaur G, Singh D, Brar JS. Heritability and principal component analysis of phytochemical traits in guava under Indian subtropics. Appl Fruit Sci. 2024;66(1):193-202. https://doi.org/10.1007/s10341-023-01012-5

Downloads

Download data is not yet available.