Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Rhizosphere dynamics in contaminated soils: Unravelling plant, metal and microbe relationships

DOI
https://doi.org/10.14719/pst.10130
Submitted
18 June 2025
Published
26-09-2025

Abstract

Heavy metal contamination from both natural and anthropogenic sources poses a significant environmental challenge, impacting human and animal health, as well as microbial populations. Microbes exposed to elevated metal concentrations develop resistance mechanisms, involving both physiological and genetic adaptations, to detoxify and transform metals. Recent advancements have elucidated the roles of metal-metabolizing bacteria and transport proteins during metal detoxification. Microbial inoculation with phytoremediation is termed as rhizoremediation, which enhances degradation of toxic compounds in soil, offering a promising solution to contamination issues. The synergistic relations between plants and microbes in the rhizosphere highlight the importance of root exudates in mediating microbial communities for plant nutrition and metal biotransformation. It is for these reasons that it is imperative to better understand these interactions in order to design more effective convention for the detoxification of metals for enhanced soil quality. The potential application of plant-microbe synergism in the remediation of metal pollutants using environmentally friendly and economically viable methods in soil remain scarce.

References

  1. 1. Mani D, Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int J Environ Sci Technol. 2014;11:843-72.https://doi.org/10.1007/s13762-013-0299-8
  2. 2. Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour Technol. 2020;303:122886.https://doi.org/10.1016/j.biortech.2020.122886
  3. 3. Zerizghi T, Yang Y, Wang W, Zhou Y, Zhang J, Yi Y. Ecological risk assessment of heavy metal concentrations in sediment and fish of a shallow lake: A case study of Baiyangdian Lake, North China. Environ Monit Assess. 2020;192:110. https://doi.org/10.1007/s10661-020-8078-8
  4. 4. Leong KY, Ho LY, Tan KH, Tan YY, Lee SP, Qamar AM, et al. Environmental and occupational health impact of bauxite mining in Malaysia: A review. IIUM Med J Malaysia. 2017;16(2):1-7.
  5. https://doi.org/10.31436/imjm.v16i2.346
  6. 5. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health. 2017;14:94. https://doi.org/10.3390/ijerph14010094
  7. 6. Saha L, Tiwari J, Bauddh K, Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Front Microbiol. 2021;12:665058.
  8. https://doi.org/10.3389/fmicb.2021.731723
  9. 7. Feng Y, Wang J, Bai Z, Reading L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci Rev. 2019;191:12-25.
  10. https://doi.org/10.1016/j.earscirev.2019.02.015
  11. 8. Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of plant proteins to heavy metal stress-a review. Front Plant Sci. 2017;8:761.
  12. https://doi.org/10.3389/fpls.2017.00761
  13. 9. Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci. 2015;5:757.
  14. https://doi.org/10.3389/fpls.2014.00757
  15. 10. Ma Y, Rajkumar M, Vicente JAF, Freitas H. Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation. 2011;13(2):126-39. https://doi.org/10.1080/15226511003671403
  16. 11. Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv. 2012;30(6):1562-74.
  17. https://doi.org/10.1016/j.biotechadv.2012.04.011
  18. 12. Badri DV, Weir TL, van der Lelie D, Vivanco JM. Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol. 2009;20(6):642-50.
  19. https://doi.org/10.1016/j.copbio.2009.09.014
  20. 13. Hartmann A, Schmid M, van Tuinen D, Berg G. Plant-driven selection of microbes. Plant Soil. 2009;321(1-2):235-57. https://doi.org/10.1007/s11104-008-9814-y
  21. 14. Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil. 2009;321(1-2):5-33. https://doi.org/10.1007/s11104-009-9925-0
  22. 15. Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea and fungi and of some of their structuring factors. Plant Soil. 2009;321(1-2):189-212. https://doi.org/10.1007/s11104-009-9991-3
  23. 16. Dessaux Y, Grandclément C, Faure D. Engineering the rhizosphere. Trends Plant Sci. 2016;21:266-78. https://doi.org/10.1016/j.tplants.2016.01.002
  24. 17. Weston LA, Ryan PR, Watt M. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot. 2012;63(9):3445-54. https://doi.org/10.1093/jxb/ers054
  25. 18. Rohrbacher F, St-Arnaud M. Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy. 2016;6(1):19.
  26. https://doi.org/10.3390/agronomy6010019
  27. 19. Gao Y, Yang Y, Ling W, Kong H, Zhu X. Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J. 2011;75(5):1694-703. https://doi.org/10.2136/sssaj2010.0428
  28. 20. Gustin MS, Hou D, Tack FMG. The term "heavy metal(s)": history, current debate and future use. Sci Total Environ. 2021;789:147951.
  29. https://doi.org/10.1016/j.scitotenv.2021.147951
  30. 21. Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - a review. Chemosphere. 2019;217:925-41.
  31. https://doi.org/10.1016/j.chemosphere.2018.11.010
  32. 22. García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv. 2016;34(5):859-73.
  33. https://doi.org/10.1016/j.biotechadv.2016.05.003
  34. 23. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 2019;174:714-27. https://doi.org/10.1016/j.ecoenv.2019.02.068
  35. 24. Dhaliwal SS, Singh J, Taneja PK, Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res. 2020;27(2):1319-33. https://doi.org/10.1007/s11356-019-06967-1
  36. 25. Kandziora-Ciupa M, Nadgórska-Socha A, Barczyk G. The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. rhizosphere under different field conditions. Ecotoxicology. 2021;30(2):292-310. https://doi.org/10.1007/s10646-021-02345-1
  37. 26. Sharma R, Singh NS, Singh DK. Impact of heavy metal contamination and seasonal variations on enzyme's activity of Yamuna river soil in Delhi and NCR. Appl Water Sci. 2020;10(3):83. https://doi.org/10.1007/s13201-020-1166-7
  38. 27. Mensah AK, Marschner B, Antoniadis V, Stemn E, Shaheen SM, Rinklebe J. Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Sci Total Environ. 2021;798:149272.
  39. https://doi.org/10.1016/j.scitotenv.2021.149272
  40. 28. Raklami A, Meddich A, Oufdou K, Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms and molecular responses. Int J Mol Sci. 2022;23(9):5031. https://doi.org/10.3390/ijms23095031
  41. 29. Li C, Quan Q, Gan Y, Dong J, Fang J, Wang L, et al. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Sci Total Environ. 2020;749:141555. https://doi.org/10.1016/j.scitotenv.2020.141555
  42. 30. Shuaib M, Azam N, Bahadur S, Romman M, Yu Q, Chen X. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microb Pathog. 2021;150:104713. https://doi.org/10.1016/j.micpath.2020.104713
  43. 31. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, et al. Biological approaches to tackle heavy metal pollution: A survey of literature. J Environ Manage. 2018;217:56-70.https://doi.org/10.1016/j.jenvman.2018.03.077
  44. 32. Aponte H, Meli P, Butler B, Paolini J, Matus F, Merino C, et al. Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ. 2020;737:139744. https://doi.org/10.1016/j.scitotenv.2020.139744
  45. 33. El-Mahdy OM, Mohamed HI, Mogazy AM. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res. 2021;28(47):67608-31.
  46. https://doi.org/10.1007/s11356-021-15382-4
  47. 34. Jia Z, Li S, Wang L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci Rep. 2018;8(1):3256.https://doi.org/10.1038/s41598-018-21569-6
  48. 35. Edokpayi JN, Enitan AM, Mutileni N, Odiyo JO. Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chem Cent J. 2018;12(1):2.
  49. https://doi.org/10.1186/s13065-017-0369-y
  50. 36. Njoga EO, Ezenduka EV, Ogbodo CG, Ogbonna CU, Jaja IF, Ofomatah AC, et al. Detection, distribution and health risk assessment of toxic heavy metals/metalloids, arsenic, cadmium and lead in goat carcasses processed for human consumption in South-Eastern Nigeria. Foods. 2021;10(4):798.
  51. https://doi.org/10.3390/foods10040798
  52. 37. Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, et al. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environ Res. 2019;179:108792.
  53. https://doi.org/10.1016/j.envres.2019.108792
  54. 38. Sharma I. Bioremediation techniques for polluted environment: Concept, advantages, limitations and prospects. In: Trace metals in the environment - new approaches and recent advances. IntechOpen; 2021.
  55. https://doi.org/10.5772/intechopen.90453
  56. 39. Folch A, Vilaplana M, Amado L, Vicent T, Caminal G. Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater. 2013;262:554-60.https://doi.org/10.1016/j.jhazmat.2013.09.004
  57. 40. Frascari D, Zanaroli G, Danko AS. In situ aerobic cometabolism of chlorinated solvents: A review. J Hazard Mater. 2015;283:382-99.
  58. https://doi.org/10.1016/j.jhazmat.2014.09.041
  59. 41. Kulshreshtha A, Agrawal R, Barar M, Saxena S. A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci. 2014;8. https://doi.org/10.9790/2402-08714450
  60. 42. Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol. 2010;101(22):8599-605. https://doi.org/10.1016/j.biortech.2010.06.085
  61. 43. Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020;6. https://doi.org/10.1080/23311932.2020.1783174
  62. 44. Verma JP, Jaiswal DK. Book review: Advances in biodegradation and bioremediation of industrial waste. Front Microbiol. 2016;6.
  63. https://doi.org/10.3389/fmicb.2015.01555
  64. 45. Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00303
  65. 46. Forsyth JV, Tym T, Brd B. Bioremediation: When is bioaugmentation needed? In: Hinchee RE, Fredrickson J, Alleman BC, editors. Bioaugmentation for site remediation. 1995.
  66. 47. Mishra S, Jyot J, Kuhad RC, Lal B. Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol. 2001;67(4):1675-81. https://doi.org/10.1128/AEM.67.4.1675-1681.2001
  67. 48. Saberi-Riseh R, Hajieghrari B, Rouhani H, Sharifi-Tehrani A. Effects of inoculum density and substrate type on saprophytic survival of Phytophthora drechsleri, the causal agent of gummosis (crown and root rot) on pistachio in Rafsanjan, Iran. Commun Agric Appl Biol Sci. 2004;69(4):653-6.
  68. 49. Jan AT, Azam M, Ali A, Haq QM. Prospects for exploiting bacteria for bioremediation of metal pollution. Crit Rev Environ Sci Technol. 2014;44(5):519-60. https://doi.org/10.1080/10643389.2012.728811
  69. 50. Ojuederie O, Babalola O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 2017;14(12):1504. https://doi.org/10.3390/ijerph14121504
  70. 51. Kang CH, Kwon YJ, So JS. Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng. 2016;89:64-9.
  71. https://doi.org/10.1016/j.ecoleng.2016.01.023
  72. 52. Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arab J Chem. 2019;12:1365-77. https://doi.org/10.1016/j.arabjc.2014.11.020
  73. 53. Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, et al. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J Environ Manage. 2020;254.
  74. https://doi.org/10.1016/j.jenvman.2019.109779
  75. 54. Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 2015;7:2189-212.
  76. https://doi.org/10.3390/su7022189
  77. 55. Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22(20):15386-415. https://doi.org/10.1007/s11356-015-5278-9
  78. 56. Hassan A, Periathamby A, Ahmed A, Innocent O, Hamid FS. Effective bioremediation of heavy metal-contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sediments. 2020;20(1):66-80.
  79. https://doi.org/10.1007/s11368-019-02394-4
  80. 57. Din G, Hassan A, Dunlap J, Ripp S, Shah AA. Cadmium tolerance and bioremediation potential of filamentous fungus Penicillium chrysogenum FMS2 isolated from soil. Int J Environ Sci Technol. 2022;19(4):2761-70. https://doi.org/10.1007/s13762-021-03211-7
  81. 58. Barra Caracciolo A, Grenni P, Garbini GL, Rolando L, Campanale C, Aimola G, et al. Characterization of the belowground microbial community in a poplar-phytoremediation strategy of a multi-contaminated soil. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.02073
  82. 59. Ancona V, Caracciolo AB, Campanale C, Rascio I, Grenni P, Di Lenola M, et al. Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J Chem Technol Biotechnol. 2020;95(4):940-9. https://doi.org/10.1002/jctb.6145
  83. 60. Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25-41.
  84. https://doi.org/10.1016/j.tplants.2017.09.003
  85. 61. Sun W, Xiao E, Krumins V, Häggblom MM, Dong Y, Pu Z, et al. Rhizosphere microbial response to multiple metal(loid)s in different contaminated arable soils indicates crop-specific metal-microbe interactions. Appl Environ Microbiol. 2018;84(24).https://doi.org/10.1128/AEM.00701-18
  86. 62. Sun L, Cao X, Tan C, Deng Y, Cai R, Peng X, et al. Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicol Environ Saf. 2020;205. https://doi.org/10.1016/j.ecoenv.2020.111152
  87. 63. Simón Solá MZ, Lovaisa N, Dávila Costa JS, Benimeli CS, Polti MA, Alvarez A. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. Chemosphere. 2019;222:679-87. https://doi.org/10.1016/j.chemosphere.2019.01.197
  88. 64. Barra Caracciolo A, Grenni P, Garbini GL, Rolando L, Campanale C, Aimola G, et al. Characterization of the belowground microbial community in a poplar-phytoremediation strategy of a multi-contaminated soil. Front Microbiol. 2020;11.
  89. https://doi.org/10.3389/fmicb.2020.02073
  90. 65. Das S, Chou ML, Jean JS, Yang HJ, Kim PJ. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J Hazard Mater. 2017;325:279-87. https://doi.org/10.1016/j.jhazmat.2016.12.006
  91. 66. Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, et al. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. 2017. https://doi.org/10.1021/acs.est.6b06531
  92. 67. Guarino F, Miranda A, Castiglione S, Cicatelli A. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere. 2020;251. https://doi.org/10.1016/j.chemosphere.2020.126310
  93. 68. Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S. Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manage. 2016;179:93-102. https://doi.org/10.1016/j.jenvman.2016.04.055
  94. 69. Rubin JA, Görres JH. Potential for mycorrhizae-assisted phytoremediation of phosphorus for improved water quality. Int J Environ Res Public Health. 2021;18:1-24. https://doi.org/10.3390/ijerph18010007
  95. 70. Lin H, Liu C, Li B, Dong Y. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J Hazard Mater. 2021;402. https://doi.org/10.1016/j.jhazmat.2020.123829
  96. 71. Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, et al. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. Sci Total Environ. 2021;769. https://doi.org/10.1016/j.scitotenv.2021.145224
  97. 72. Uren NC. Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In: The rhizosphere. 2000.
  98. 73. Shotyk W, LRG. Metal ions in biological systems, volume 43 - biogeochemical cycles of elements. In: Sigel H, Sigel R, editors. CRC Press; 2005.
  99. 74. Vishwakarma K, Sharma S, Kumar V, Upadhyay N, Kumar N, Mishra R, et al. Current scenario of root exudate-mediated plant-microbe interaction and promotion of plant growth. In: Probiotics in agroecosystem. Springer Singapore; 2017:349-69.https://doi.org/10.1007/978-981-10-4059-7_18
  100. 75. Singh Mahatma R, Chitrakoot G, Vishwavidyalaya G, Singh P, Sharma R, Singh R. Microorganism as a tool of bioremediation technology for cleaning environment: A review [Internet]. Proc Int Acad Ecol Environ Sci. 2014;4.
  101. 76. Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011;156(3):989-96.https://doi.org/10.1104/pp.111.175448
  102. 77. Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. Rhizosphere interactions: Root exudates, microbes and microbial communities. Botany. 2014;92:267-75. https://doi.org/10.1139/cjb-2013-0225
  103. 78. Agarwal P, Giri BS, Rani R. Unravelling the role of rhizospheric plant-microbe synergy in phytoremediation: A genomic perspective. Curr Genomics. 2020;21(5):334-42. https://doi.org/10.2174/1389202921999200623133240
  104. 79. van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256-65.
  105. https://doi.org/10.1016/j.tplants.2016.01.008
  106. 80. Lone MI, He ZL, Stoffella PJ, Yang XE. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J Zhejiang Univ Sci B. 2008;9(3):210-20. https://doi.org/10.1631/jzus.B0710633
  107. 81. Padmavathiamma PK, Li LY. Rhizosphere influence and seasonal impact on phytostabilisation of metals - A field study. Water Air Soil Pollut. 2012;223(1):107-24. https://doi.org/10.1007/s11270-011-0843-4
  108. 82. Lasat MM. Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res. 1999;2(1). https://doi.org/10.4148/1090-7025.1015
  109. 83. Moreno-Jiménez E, Esteban E, Carpena-Ruiz RO, Lobo MC, Peñalosa JM. Phytostabilisation with Mediterranean shrubs and liming improved soil quality in a pot experiment with a pyrite mine soil. J Hazard Mater. 2012;201-2:52-9. https://doi.org/10.1016/j.jhazmat.2011.11.013
  110. 84. Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments - An emerging remediation technology. Environ Health Perspect. 2008;116:278-83. https://doi.org/10.1289/ehp.10608
  111. 85. Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S. Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol. 2021;27:100210. https://doi.org/10.1016/j.cpb.2021.100210
  112. 86. Pathan SI, Ceccherini MT, Sunseri F, Lupini A. Rhizosphere as hotspot for plant-soil-microbe interaction. In: Carbon and nitrogen cycling in soil. Singapore: Springer; 2020:17-43. https://doi.org/10.1007/978-981-13-7264-3_2
  113. 87. Hou J, Liu W, Wu L, Ge Y, Hu P, Li Z, et al. Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Appl Soil Ecol. 2019;133:62-9. https://doi.org/10.1016/j.apsoil.2018.09.009
  114. 88. Luo J, Yang G, Igalavithana AD, He W, Gao B, Tsang DCW, et al. Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens. Environ Pollut. 2019;255:113169. https://doi.org/10.1016/j.envpol.2019.113169
  115. 89. Adriano DC. Trace elements in terrestrial environments. New York: Springer; 2001.https://doi.org/10.1007/978-0-387-21510-5
  116. 90. Zhao H, Wu Y, Lan X, Yang Y, Wu X, Du L. Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Sci Rep. 2022;12(1):3552. https://doi.org/10.1038/s41598-022-07602-9
  117. 91. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011;2011:1-20. https://doi.org/10.5402/2011/402647
  118. 92. Angon PB, Islam MS, KC S, Das A, Anjum N, Poudel A, et al. Sources, effects and present perspectives of heavy metals contamination: soil, plants and human food chain. Heliyon. 2024;10(7):e28357. https://doi.org/10.1016/j.heliyon.2024.e28357
  119. 93. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. In: 2012:133-64.
  120. https://doi.org/10.1007/978-3-7643-8340-4_6
  121. 94. Xing Q, Cao X, Tan C, Sun L, Deng Y, Yang J, et al. Effects of single and combined applications of three root exudates of Sedum plumbizincicola on the phytoremediation efficiency of paddy soil contaminated with Cd. Front Environ Sci. 2023;10.
  122. https://doi.org/10.3389/fenvs.2022.1086753
  123. 95. Eze MO, Amuji CF. Elucidating the significant roles of root exudates in organic pollutant biotransformation within the rhizosphere. Sci Rep. 2024;14(1):2359.
  124. https://doi.org/10.1038/s41598-024-53027-x
  125. 96. Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, et al. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1229828
  126. 97. Seregin IV, Kozhevnikova AD. The role of low-molecular-weight organic acids in metal homeostasis in plants. Int J Mol Sci. 2024;25(17):9542. https://doi.org/10.3390/ijms25179542
  127. 98. Nazari M, Bickel S, Benard P, Mason-Jones K, Carminati A, Dippold MA. Biogels in soils: plant mucilage as a biofilm matrix that shapes the rhizosphere microbial habitat. Front Plant Sci. 2022;12. https://doi.org/10.3389/fpls.2021.798992
  128. 99. Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, et al. Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol. 2007;143(4):1761-73. https://doi.org/10.1104/pp.106.094474

Downloads

Download data is not yet available.