Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

High efficiency of agroinfiltration approach in Phalaenopsis amabilis (L.) Blume (moth orchid) with transient expression of green fluorescent protein reporter gene

DOI
https://doi.org/10.14719/pst.10138
Submitted
19 June 2025
Published
12-12-2025

Abstract

Agroinfiltration has become a crucial technique in molecular biology, enabling the transfer of functional genes into target plants for rapid gene expression analysis. This study investigated the use of agroinfiltration for transient expression of the green fluorescent protein (GFP) reporter gene in Phalaenopsis amabilis (L.) Blume transformant leaves. The aim was to establish an efficient and rapid genetic transformation method for generating transformant plant candidates. Agroinfiltration was performed on the leaves using a suspension containing Agrobacterium
tumefaciens strain GV3101, which harbored a T-DNA construct in the pRI101AN vector carrying the 35S::GFP and neomycin phosphotransferase II (NPTII) genes. Plant development post-infiltration was monitored microscopically with a fluorescence microscope and confirmed molecularly using PCR (polymerase chain reaction) with specific primers for GFP (736 bp), NPTII (550 bp) and ACTIN (114 bp). The results showed that green fluorescence, indicating GFP expression, was detected under a blue laser (450 - 480 nm) within 24 hr post-infiltration on both the adaxial and
abaxial leaf surfaces, particularly along the midvein (primary veins) and leaf margins. Anatomical analysis of transverse and longitudinal free-hand sections further confirmed the rapid occurrence within the epidermis, mesophyll and vascular tissues. The accuracy of the data was supported and confirmed by the positive results of all three P. amabilis transformant plants that were analyzed by PCR and it was proven that all positive transformant plants carried the GFP, NPTII and ACTIN genes as positive controls. These results indicate agroinfiltration and GFP approach offering efficient, rapid and valuable prospects for accelerating genetic engineering applications in plant research.

References

  1. 1. Jiang M, Zhu Y, Wu Q, Zhang H. Complete chloroplast genome of a rare and endangered plant species Phalaenopsis zhejiangensis: genomic features and phylogenetic relationship within Orchidaceae. Mitochondrial DNA Part B Resour. 2021;6(10):2872–9. https://doi.org/10.1080/23802359.2021.1972049
  2. 2. Tsai CC. Molecular phylogeny and biogeography of Phalaenopsis species. In: Chen WH, Chen HH, editors. Orchid Biotechnology II. Singapore: World Scientific; 2011. p. 1–24. https://doi.org/10.1142/9789814327930_0001
  3. 3. Hsu CC, Chen HH, Chen WH. Phalaenopsis. In: van Huylenbroeck J, editor. Ornamental crops: handbook of plant breeding. Cham: Springer; 2018. p. 567–625. https://doi.org/10.1007/978-3-319-90698-0
  4. 4. Semiarti E, Indrianto A, Purwantoro A, Machida Y, Machida C. Agrobacterium-mediated transformation of Indonesian orchids for micropropagation. In: Alvarez M, editor. Genetic transformation. Rijeka: InTech; 2011. p. 215–40. https://doi.org/10.5772/24997
  5. 5. Enoki S, Takahara Y. Application of biotechnological approaches in the product and breeding of Phalaenopsis orchid. In: Khan MS, editor. Tropical plant species and technological interventions for improvement. London: IntechOpen; 2023. p. 1–21. http://dx.doi.org/10.5772/intechopen.104597
  6. 6. Goh LPW, Jaisi BL, Jawan R, Gansau JA. Plant growth promoting endophytic microorganisms from orchids for a sustainable agriculture. J Trop Biodivers Biotechnol. 2024;9(1):1–13. https://doi.org/10.22146/jtbb.74403
  7. 7. Zhao H, Tan Z, Wen X, Wang Y. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and tween-20. Plants. 2017;6(9):1–10. https://doi.org/10.3390/plants6010009
  8. 8. Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, et al. Agroinfiltration mediated scalable transient gene expression in genome edited crop plants. Int J Mol Sci. 2021;22:1–35. https://doi.org/10.3390/ijms221910882
  9. 9. Men S, Ming X, Wang Y, Liu R, Wei C, Li Y. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep. 2003;21(6):592–8. https://doi.org/10.1007/s00299-002-0559-4
  10. 10. Chai D, Yu H. Recent advances in transgenic orchid production. Orchid Sci Biotechnol. 2007;1(2):34–9. https://www.researchgate.net/publication/255603610
  11. 11. Semiarti E, Indrianto A, Purwantoro A, Isminingsih S, Suseno N, Ishikawa T, et al. Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis. Plant Biotechnol. 2007;24(3):265–72. https://doi.org/10.5511/plantbiotechnology.24.265
  12. 12. Semiarti E, Indrianto A, Purwantoro A, Martiwi INA, Feroniasanti YML, Nadifah F, et al. High-frequency genetic transformation of Phalaenopsis amabilis orchid using tomato extract-enriched medium for the preculture of protocorms. J Hortic Sci Biotechnol. 2010;85(3):205–10. https://doi.org/10.1080/14620316.2010.11512655
  13. 13. Perdana NGA, Mose W, Lawrie MD, Gutierrez-Marcos J, Semiarti E. Stable transformant of Phalaenopsis amabilis somatic embryo carrying 35S: AtRKD4 develops into normal phenotype of transgenic plant. J Trop Biodivers Biotechnol. 2021;6(2):1–11. https://doi.org/10.22146/JTBB.59210
  14. 14. Matsuo K, Fukuzawa N, Matsumura T. A simple agroinfiltration method for transient gene expression in plant leaf discs. J Biosci Bioeng. 2016;122(3):351–6. https://doi.org/10.1016/j.jbiosc.2016.02.001
  15. 15. Zheng L, Yang J, Chen Y, Ding L, Wei J, Wang H. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC Plant Biol. 2021;21(1):1–19. https://doi.org/10.1186/s12870-021-02833-w
  16. 16. Gunadi A, Dean EA, Finer JJ. Transient transformation using particle bombardment for gene expression analysis. In: Kumar S, Barone P, Smith M, editors. Transgenic plants: methods and protocols, methods in molecular biology. Cham: Springer Nature; 2019. p. 67–79. https://doi.org/10.1007/978-1-4939-8778-8_5
  17. 17. Norkunas K, Harding R, Dale J, Dugdale B. Improving agroinfiltration based transient gene expression in Nicotiana benthamiana. Plant Methods. 2018;14:71. https://doi.org/10.1186/s13007-018-0343-2
  18. 18. Hoshikawa K, Fujita S, Renhu N, Ezura K, Yamamoto T, Nonaka S, et al. Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Rep. 2019;38(1):75–84. https://doi.org/10.1007/s00299-018-2350-1
  19. 19. Salazar-González JA, Castro-Medina M, Bernardino-Rivera LE, Martínez-Terrazas E, Casson SA, Urrea-López R. In-planta transient transformation of avocado (Persea americana) by vacuum agroinfiltration of aerial plant parts. Plant Cell Tissue Organ Cult. 2023;152(3):635–46. https://doi.org/10.1007/s11240-022-02436-9
  20. 20. Subchan AN, Nopitasari S, Setiawati Y, Zubaidah L, Nikmah N, Lawrie MD, et al. Agrobacterium-mediated transformation by using immerse and agroinfiltration method for genome editing of orchids with CRISPR/Cas9. Acta Hortic. 2022;1334:263–71. https://doi.org/10.17660/ActaHortic.2022.1334.32
  21. 21. Primasiwi DH, Purwestri YA, Semiarti E. Improving transient gene expression and agroinfiltration-based transformation effectiveness in Indonesian orchid Phalaenopsis amabilis (L.) Blume. Indones J Biotechnol. 2024;29(3):111–20. https://doi.org/10.22146/ijbiotech.80555
  22. 22. Haddock SHD, Dunn CW. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol Open. 2015;4(9):1094–104. https://doi.org/10.1242/bio.012138
  23. 23. Nielsen JR, Lewis MJ, Huang WE. Construction and characterization of MoClo-compatible vectors for modular protein expression in E. coli. ACS Synth Biol. 2025;14:398–406. https://doi.org/10.1021/acssynbio.4c00564
  24. 24. Priyadarshani SVGN, Cai H, Zhou Q, Liu Y, Cheng Y, Xiong J, et al. An efficient Agrobacterium-mediated transformation of pineapple with GFP-tagged protein allows easy, non-destructive screening of transgenic pineapple plants. Biomolecules. 2019;9(10):1–12. https://doi.org/10.3390/biom9100617
  25. 25. Wahyuningsih S, Lawrie MD, Daryono BS, Moeljopawiro S, Jang S, Semiarti E. Early detection of the orchid flowering gene PaFT1 in tobacco cells using a GFP reporter. Indones J Biotechnol. 2017;21(1):12. https://doi.org/10.22146/ijbiotech.26781
  26. 26. Nishizhawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S. Suppression of Ku70 80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol. 2012;196:1048–59. https://doi.org/10.1111/j.1469-8137.2012.04350.x
  27. 27. Nester EW. Agrobacterium: nature’s genetic engineer. Front Plant Sci. 2015;5:1–16. https://doi.org/10.3389/fpls.2014.00730
  28. 28. Purwantoro A, Irsyadi MB, Sawitri WD, Fatumi NC, Fajrina SN. Efficient floral dip transformation method using Agrobacterium tumefaciens on Cosmos sulphureus Cav. Saudi J Biol Sci. 2023;30(7):103702. https://doi.org/10.1016/j.sjbs.2023.103702
  29. 29. Semiarti E, Purwantoro A, Purnomo. Produksi planlet tanaman anggrek Dendrobium macrophyllum dengan metode agroinfiltrasi. Patent IDP000095582; 2024.
  30. 30. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–6. https://doi.org/10.1093/nar/8.19.4321
  31. 31. Mondragon-Palomino M, Theißen G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers or Orchidaceae: refining the ‘orchid code’. Plant J. 2011;66:1008–19. https://doi.org/10.1111/j.1365-313X.2011.04560.x
  32. 32. Donaldson L. Autofluorescence in plants. Molecules. 2020;25(10):1–20. https://doi.org/10.3390/molecules25102393
  33. 33. Hsing HX, Lin YJ, Tong CG, Li MJ, Chen YJ, Ko SS. Efficient and heritable transformation of Phalaenopsis orchids. Bot Stud. 2016;57:1–12. https://doi.org/10.1186/s40529-016-0146-6
  34. 34. Hussein GM, Abu El-Heba GA, Abdou SM, Abdallah NA. Optimization of transient gene expression system in Gerbera jemosonii petals. GM Crops Food. 2013;4(1):50–7. https://doi.org/10.4161/gmcr.23925
  35. 35. Lopez-Agudelo JC, Goh F, Tchabashvili S, Huang Y, Huang C, Lee K, et al. Rhizobium rhizogenes A4-derived strains mediate hyper-efficient transient gene expression in Nicotiana benthamiana and other solanaceous plants. bioRxiv. 2024:1–25. https://doi.org/10.1101/2024.11.30.626145
  36. 36. Grosse-Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RAL. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. Plant Biotechnol J. 2018;16(5):1068–84. https://doi.org/10.1111/pbi.12852
  37. 37. Din Mufti FU, Aman S, Banaras S, Shinwari ZK, Shakeel S. Actin gene identification from selected medicinal plants for their use as internal controls for gene expression studies. Pakistan J Bot. 2015;47(2):629–35.

Downloads

Download data is not yet available.