Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Allelopathic effects of bitter gourd (Momordica charantia L.) whole plant extract and dry biomass on germination and growth of vegetable cowpea, okra and amaranth

DOI
https://doi.org/10.14719/pst.10148
Submitted
19 June 2025
Published
10-10-2025

Abstract

The study was carried out to evaluate the allelopathic potential of bitter gourd on vegetable crops such as vegetable cowpea, okra and amaranth. The research comprised a germination bioassay (September 2023 to October 2023), to assess the allelopathic effect of whole plant extract of bitter gourd on germination and early seedling growth of vegetable cowpea and okra and a soil incubation study (November 2023 to December 2023) to evaluate the effect of bitter gourd dry biomass on the growth of amaranth seedlings. Both experiments were laid out in a Completely Randomised Design (CRD), with each treatment replicated five times. Statistical analysis (p <0.05) revealed that the aqueous extract of the whole plant of bitter gourd at a concentration of 5 w/v (T1) and 10 w/v (T2) caused a delay in seed germination in both okra and vegetable cowpea and a reduction in root and shoot growth in vegetable cowpea at the early growth stages compared to the control (T3-distilled water). The treatment T2 recorded the lowest seed germination (78.00±8.37 % in vegetable cowpea on day 5; 78.00±4.47 % in okra on day 4 of the study) but was statistically on par with T1. Soil incubation, with lower concentrations of bitter gourd dry biomass (I1-5g and I2-10 g), enhanced amaranth seedling dry weight at 20 and 30 days after transplanting (DAT), while higher concentration (I3-15 g) exhibited an inhibitory effect at 20 DAT compared to the control without incubation (I4). Through the adoption of proper management strategies to minimise the initial inhibitory effect of bitter gourd, crops such as vegetable cowpea, okra and amaranth can be successfully integrated into bitter gourd-based cropping systems.

References

  1. 1. Rice EL. Allelopathy-an update. Bot Rev. 1979;45(1):15-109. https://doi.org/10.1007/BF02869951
  2. 2. Seigler DS. Chemistry and mechanism of allelopathic interactions. Agron J. 1996;88:876-85. https://doi.org/10.2134/agronj1996.00021962003600060006x
  3. 3. Putnam AR. Allelochemicals from plants as herbicides. Weed Technol. 1988;2(4):510-18. https://doi.org/10.1017/S0890037X00032371
  4. 4. Zeng L, Shannon MC, Lesch SM. Timing of salinity stress affects rice growth and yield components. Agric Water Manag. 2001;48(3):191-206. https://doi.org/10.1016/S0378-3774(00)00146-3
  5. 5. Yu JQ. Autotoxic potential of vegetable crops. In: Narwal SS, editor. Allelopathy update: basic and applied aspects. New York: Science Publishers Inc; 1999:159-62.
  6. 6. Huang HC, Chou CH, Erickson RS. Soil sickness and its control. Allelopathy J. 2006;18(1):1-22.
  7. 7. Jacob J, Sreekumar KM, Rekha P. Allelopathic effects of leaf leachates of multipurpose trees on vegetables. Allelopathy J. 2007;19:507-16.
  8. 8. Qasem JR. Allelopathic effects of Amaranthus retroflexus and Chenopodium murale on vegetable crops. Allelopathy J. 1995;2(1):49-66.
  9. 9. Shubha AS, Devaraju, Sharavati MB, Srinivasa V, Kantharaj Y, Ravi CS, et al. Medicinal and nutritional importance of bitter melon (Momordica charantia L): A review article. 2018;SP3:297-300.
  10. 10. Kerala. Agriculture Development and Farmer's Welfare Department. Farm Guide 2021. Thiruvananthapuram: Farm Information Bureau; 2021.
  11. 11. Kerala. Agriculture Development and Farmer's Welfare Department. Farm Guide 2024. Thiruvananthapuram: Farm Information Bureau; 2024.
  12. 12. Shuo M, Su ASA, ShiLong YSY, Yang YYY, ChaoHua ZCZ, ZhiWei FZF. Allelopathic effect of Momordica charantia on 8 vegetables. China Vegetables. 2017;2:55-60.
  13. 13. Singh NB, Deen S. Allelopathic stress produced by bitter gourd (Momordica charantia L.). J Stress Physiol Biochem. 2014;10(2):5-14.
  14. 14. Zhang Z, Liu Y, Yuan L, Weber E, Kleunen MV. Effect of allelopathy on plant performance: a meta-analysis. Ecol Lett. 2021;24(2):348-62. https://doi.org/10.1111/ele.13627
  15. 15. Singh UP, Maurya S, Singh A, Singh M. Phenolic acid in some Indian cultivars of Momordica charantia and their therapeutic properties. J Med Plants Res. 2011;5(15):3558-60.
  16. 16. Karatas A, Savsatli Y. Characterization of volatile compounds nongrafted and pumpkin-grafted bitter gourd (Momordica charantia L.). Turk J Agric For. 2022;46(3):327-39. https://doi.org/10.55730/1300-011X.3006
  17. 17. Kerala. Government of Kerala. A compendium of agricultural statistics: Kerala, Thiruvananthapuram. 2023.
  18. 18. Szwed M, Mitrus J, Wiczkowski W, Debski H, Horbowicz M. If phenolic compounds in the soil with buckwheat residues affect the emergence and growth of weed seedlings? Acta Physiol Plant. 2020;42(9):154. https://doi.org/10.1007/s11738-020-03142-9
  19. 19. Bouyoucos CJ. Hydrometer method improved for making particle size analysis of soil. Agron J. 1962;54(5):464-5.
  20. https://doi.org/10.2134/agronj1962.00021962005400050028x
  21. 20. Caboun V, John J. Allelopathy research methods in forestry. Allelopathy J. 2015;36(2):133-66.
  22. 21. Richardson DR, Williamson GB. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills. For Sci. 1988;34(3):592-605. https://doi.org/10.1093/forestscience/34.3.592
  23. 22. Wilson DO. Evaluation of chemical seed coat sterilants. Plant Soil. 1976;44:703-7. https://doi.org/10.1007/BF00011388
  24. 23. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630-3.
  25. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  26. 24. Gopinath PP, Prasad R, Joseph B, Adarsh VS. Collection of shiny apps for data analysis in agriculture. J Open Source Softw. 2021;6(63):3437. https://doi.org/10.21105/joss.03437
  27. 25. Yan S, Cai B, Tang H, Yuan Y, Ao S. Allelopathy of different parts of Momordica charantia. J Agric Sci Technol. 2018;20(8):100-7. https://doi.org/10.13304/j.nykjdb.2017.0384
  28. 26. Coder KD, Warnell D. Potential allelopathy in different tree species. USA: University of Georgia; 1999.
  29. 27. Valcheva E, Popov V, Marinov-Serafimov P, Golubinova I, Nikolov B, Velcheva I, et al. A case study of allelopathic effect of parsley, dill, onion and carrots on the germination and initial development of tomato plants. Ecol Balk. 2019;11(1):167-77.
  30. 28. Ayeni MJ, Kayode J. Laboratory studies on the effects of aqueous extracts from Sorghum bicolor stem and Zea mays (roots and tassel) on the germination and seedling growth of okra (Abelmoschus esculentus L.). Adv Agric. 2014;2014(1):6.
  31. https://doi.org/10.1155/2014/958503
  32. 29. Yang GQ, Wan FH, Liu WX, Guo JY. Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings. Allelopathy J. 2008;21(2):253-62.
  33. 30. Reigosa MJ, Souto XC, Gonzalez. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 1999;28:83-8. https://doi.org/10.1023/A:1006269716762
  34. 31. Belz RG, Hurle K, Duke SO. Dose-response: a challenge for allelopathy? Nonlinearity Biol Toxicol Med. 2005;3(2):173-211.
  35. https://doi.org/10.2201/nonlin.003.02.002
  36. 32. ZhongQun H, Zhuang J, Tang H, Huang Z. Different vegetables crops in response to allelopathic of hot pepper root exudates. World Appl Sci J. 2012;19(9):1289-94. https://doi.org/10.5829/idosi.wasj.2012.19.09.1886
  37. 33. Shilling DG, Dusky JA, Mossier MA, Bewick TA. Allelopathic potential of celery residues on lettuce. J Am Soc Hortic Sci. 1992;117(2):308-12.
  38. https://doi.org/10.21273/JASHS.117.2.308
  39. 34. Danilova M, Doroshenko A, Kudryakova N, Klepikova A, Shtratnikova VY, Kusnetsov V. The crosstalk between cytokinin and auxin signaling pathways in the control of natural senescence of Arabidopsis thaliana leaves. Russ J Plant Physiol. 2020;67:1028-35. https://doi.org/10.1134/S1021443720060035
  40. 35. Vargas-Hernandez M, Macias-Bobadilla I, Guevara-Gonzalez RG, Romero-Gomez SDJ, Rico-Garcia E, Ocampo-Velazquez RV, et al. Plant hormesis management with biostimulants of biotic origin in agriculture. Front Plant Sci. 2017;8:1762.
  41. https://doi.org/10.3389/fpls.2017.01762
  42. 36. Abbas A, Huang P, Hussain S, He L, Shen F, Du D. Application of allelopathic phenomena to enhance growth and production of camelina (Camelina sativa (L.)). Appl Ecol Environ Res. 2020;19(1):453-69. https://doi.org/10.15666/aeer/1901_453469
  43. 37. Geng GD, Zhang SQ, Cheng ZH. Effects of different allelochemicals on mineral elements absorption of tomato root. China Veget. 2009;4:48-51.
  44. 38. Scavo A, Abbate C, Mauromicale G. Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil. 2019;442:23-48. https://doi.org/10.1007/s11104-019-04190-y
  45. 39. Khatri K, Bargali B, Bargali SS. Allelopathic effects of fresh and dried leaf extracts of Ageratina adenophora on rice varieties. Discov Plants. 2025;2(96):1-14. https://doi.org/10.1007/s44372-025-00173-9

Downloads

Download data is not yet available.