Review Articles
Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II
Exploring the impact of drone technology on agricultural practices: A bibliometric review
Department of Agricultural and Rural Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Agriculture College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Agricultural and Rural Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Office of the Dean (Agriculture), Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Agricultural and Rural Management, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Drone technology has emerged as a transformative tool in agriculture, yet its overall impact lacks a thorough bibliometric evaluation. The study offers a detailed analysis of its applications, advantages and the challenges faced in agricultural practices. Drones or unmanned aerial vehicles (UAVs), have become essential tools in precision agriculture, enabling real-time monitoring, diseases identification, yields estimation and the precise application of fertilizers and pesticides. By integrating advanced imaging technologies and machine learning, drones enhance decision-making and optimize resource utilization in farming operations. This research employs a bibliometric approach using Biblioshiny and VOSviewer to analyze 375 articles from the Scopus database (2011–2025),
identifying key research trends, influential authors and thematic clusters. The findings reveal a significant rise in agricultural drone research, particularly after 2019, driven by technology innovations and a global shift toward sustainable farming practices. Despite their potential, several barriers hinder widespread adoption-especially in developing countries. These include limited awareness among small-scale farmers, regulatory restrictions, infrastructural deficiencies, high initial costs and a shortage of skilled personnel. The review also highlights research gaps in long-term impact assessments, ethical considerations and integration with emerging technologies such as blockchain and the internet of things (IoT). To fully realize the transformative potential of drones in global agriculture, the article concludes by emphasizing the need for inclusive, context-specific solutions, enabling legislation and international collaboration.
References
- 1. Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agric. 2012;13:693–712. https://doi.org/10.1007/s11119-012-9274-5
- 2. Tsouros DC, Bibi S, Sarigiannidis PG. A review on UAV-based applications for precision agriculture. Information. 2019;10(11):349. https://doi.org/10.3390/info10110349
- 3. Topaj A, Mirschel W. Abnormal shapes of production function: Model interpretations. Comput Electron Agric. 2018;145:199–207. https://doi.org/10.1016/j.compag.2017.12.039
- 4. Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014;6(11):10395–412. https://doi.org/10.3390/rs61110395
- 5. Cuaran J, Leon J. Crop monitoring using unmanned aerial vehicles: A review. Agric Rev. 2021;42(2):121–32. https://doi.org/10.18805/ag.R-180
- 6. dela Torre DMG, Gao J, Macinnis-Ng C. Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spatial Info Sci. 2021;24(4):580–603. https://doi.org/10.1080/10095020.2021.1936656
- 7. Maes WH, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019;24(2):152–64. https://doi.org/10.1016/j.tplants.2018.11.007
- 8. Hunt Jr ER, Daughtry CST. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int J Remote Sens. 2018;39(15–16):5345–76. https://doi.org/10.1080/01431161.2017.1410300
- 9. Mogili UMR, Deepak B. Review on application of drone systems in precision agriculture. Procedia Comput Sci. 2018;133:502–509. https://doi.org/10.1016/j.procs.2018.07.063
- 10. Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017;9(11):1110. https://doi.org/10.3390/rs9111110
- 11. Gano B, Bhadra S, Vilbig JM, Ahmed N, Sagan V, Shakoor N. Drone‐based imaging sensors, techniques, and applications in plant phenotyping for crop breeding: A comprehensive review. Plant Phenome J. 2024;7(1):e20100. https://doi.org/10.1002/ppj2.20100
- 12. Acharya BS, Bhandari M, Bandini F, Pizarro A, Perks M, Joshi DR, et al. Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives. Water Resour Res. 2021;57(11):e2021WR029925. https://doi.org/10.1029/2021WR029925
- 13. Peña JM, Torres-Sánchez J, de Castro AI, Kelly M, López-Granados F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One. 2013;8(10):e77151. https://doi.org/10.1371/journal.pone.0077151
- 14. Tokekar P, Vander Hook J, Mulla D, Isler V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture. IEEE Trans Robotics. 2016;32(6):1498–511. https://doi.org/10.1109/TRO.2016.2603528
- 15. Balkrishna A, Pathak R, Kumar S, Arya V, Singh SK. A comprehensive analysis of the advances in Indian digital agricultural architecture. Smart Agric Technol. 2023;5:100318. https://doi.org/10.1016/j.atech.2023.100318
- 16. Omia E, Bae H, Park E, Kim MS, Baek I, Kabenge I, et al. Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sens. 2023;15(2):354. https://doi.org/10.3390/rs15020354
- 17. Zualkernan I, Abuhani DA, Hussain MH, Khan J, ElMohandes M. Machine learning for precision agriculture using imagery from unmanned aerial vehicles (UAVS): A survey. Drones. 2023;7(6):382. https://doi.org/10.3390/drones7060382
- 18. Pathak H, Kumar G, Mohapatra SD, Gaikwad BB, Rane J. Use of drones in agriculture: Potentials, problems and policy needs. ICAR-National Institute of Abiotic Stress Management. 2020;300:4–15.
- 19. Sah B, Gupta R, Bani-Hani D. Analysis of barriers to implement drone logistics. Int J Logistics Res Appl. 2021;24(6):531–50. https://doi.org/10.1080/13675567.2020.1782862
- 20. Puppala H, Peddinti PRT, Tamvada JP, Ahuja J, Kim B. Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India. Technol Soc. 2023;74:102335. https://doi.org/10.1016/j.techsoc.2023.102335
- 21. Schmidt R, Schadow J, Eißfeldt H, Pecena Y. Insights on remote pilot competences and training needs of civil drone pilots. Transp Res Procedia. 2022;66:1–7. https://doi.org/10.1016/j.trpro.2022.12.001
- 22. Hoek Spaans R, Drumond B, van Daalen KR, Rorato Vitor AC, Derbyshire A, Da Silva A, et al. Ethical considerations related to drone use for environment and health research: A scoping review protocol. PLoS One. 2024;19(1):e0287270. https://doi.org/10.1371/journal.pone.0287270
- 23. Zuo A, Wheeler SA, Sun H. Flying over the farm: Understanding drone adoption by Australian irrigators. Precis Agric. 2021;22(6):1973–91. https://doi.org/10.1007/s11119-021-09821-y
- 24. Raj A, Sah B. Analyzing critical success factors for implementation of drones in the logistics sector using grey-DEMATEL based approach. Comput Ind Eng. 2019;138:106118. https://doi.org/10.1016/j.cie.2019.106118
- 25. Sharma M, Hema N. Comparison of agricultural drones and challenges in implementation: A Review. In: 2021 7th International Conference on Signal Processing and Communication (ICSC). IEEE; 2021. p. 26–30. https://doi.org/10.1109/ICSC53193.2021.9673491
- 26. Da Silveira F, Lermen FH, Amaral FG. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Comput Electron Agric. 2021;189:106405. https://doi.org/10.1016/j.compag.2021.106405
- 27. Rejeb A, Abdollahi A, Rejeb K, Treiblmaier H. Drones in agriculture: A review and bibliometric analysis. Comput Electron Agric. 2022;198:107017. https://doi.org/10.1016/j.compag.2022.107017
- 28. Freeman PK, Freeland RS. Agricultural UAVs in the US: Potential, policy, and hype. Remote Sens Appl. 2015;2:35–43. https://doi.org/10.1016/j.rsase.2015.10.002
- 29. Elijah O, Rahman TA, Orikumhi I, Leow CY, Hindia MHDN. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018;5(5):3758–73. https://doi.org/10.1109/JIOT.2018.2844296
- 30. Rao B, Gopi AG, Maione R. The societal impact of commercial drones. Technol Soc. 2016;45:83–90. https://doi.org/10.1016/j.techsoc.2016.02.009
- 31. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285–96. https://doi.org/10.1016/j.jbusres.2021.04.070
- 32. Jesson J, Lacey FM, Matheson L. Doing your literature review: Traditional and systematic techniques; 2011.
- 33. Ellegaard O, Wallin JA. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics. 2015;105:1809–31. https://doi.org/10.1007/s11192-015-1645-z
- 34. Gasparyan AY, Yessirkepov M, Duisenova A, Trukhachev VI, Kostyukova EI, Kitas GD. Researcher and author impact metrics: Variety, value, and context. J Korean Med Sci. 2018;33(18):e139. https://doi.org/10.3346/jkms.2018.33.e139
- 35. Ayaz S, Masood N. Comparison of researchers’ impact indices. PLoS One. 2020;15(5):e0233765. https://doi.org/10.1371/journal.pone.0233765
- 36. Hirsch JE. An index to quantify an individual’s scientific research output. Proc Nat Acad Sci. 2005;102(46):16569–72. https://doi.org/10.1073/pnas.0507655102
- 37. Egghe L. Theory and practise of the g-index. Scientometrics. 2006;69(1):131–52. https://doi.org/10.1007/s11192-006-0144-7
- 38. Merigó JM, Yang JB. A bibliometric analysis of operations research and management science. Omega (Westport). 2017;73:37–48. https://doi.org/10.1016/j.omega.2016.12.004
- 39. Liu Y, Zhang Y, Bai Y. Applications of UAV based remote sensing in precision agriculture: A review. Comput Electron Agric. 2020;170:105251. https://doi.org/10.1016/j.compag.2020.105251
- 40. Ayamga M, Tekinerdogan B, Kassahun A. Exploring challenges posed by drone regulations in African agriculture. Land. 2021;10(2):164. https://doi.org/10.3390/land10020164
- 41. Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun D, Menesatti P. A review on agri technologies based on UAVs. Sensors. 2020;20(18):5176. https://doi.org/10.3390/s20185176
- 42. Du X, Wang X, Li M, Li C. UAV remote sensing and AI in agriculture. Remote Sens. 2022;14(5):1123. https://doi.org/10.3390/rs14051123
- 43. Figorilli S, Antonucci F, Costa C, Pallottino F, Raso L. Blockchain traceability using UAVs in wood supply chains. Sensors. 2019;19(3):683. https://doi.org/10.3390/s19030683
- 44. Jagarlapudi A, Yellapu A, Maddi S. UAV based crop monitoring using ML image processing. Agric Res J. 2023;60(1):11–18.
- 45. Kaivosoja J, Salo H, Rautiainen T. Review of remote sensing technologies for precision agriculture. Precis Agric. 2018;19(5):900–26. https://doi.org/10.1007/s11119 018 9587 y
- 46. Pallottino F, Costa C, Figorilli S, Menesatti P. UAVs for precision agriculture: Data acquisition and analysis. Agron Res. 2020;18(S1):234–44.
- 47. Pingale R, Jadhav V, Mane M. Role of UAVs in Indian agriculture: Opportunities and challenges. Int J Agric Sci. 2021;13(2):112–17.
- 48. Raj R, Kumar A, Sharma A. Drone applications in precision farming: Emerging trends. J Agric Technol. 2021;17(3):45–54.
- 49. Callon M, Courtial JP, Laville F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics. 1991;22:155–205. https://doi.org/10.1007/BF02019280
- 50. Zahawi RA. Restoration of tropical forests: The potential of forest restoration programs in Latin America. Biol Conserv. 2015;182:23-34. https://doi.org/10.1016/j.biocon.2015.03.031
- 51. Huuskonen J. Evaluation of the effects of climate change on farm yields using remote sensing data. Comput Electron Agric. 2018;155:23-31. https://doi.org/10.1016/j.compag.2018.08.039
- 52. Jakob S. Remote sensing technology for precision agriculture. Remote Sens. 2017;9(1):88. https://doi.org/10.3390/rs9010088
- 53. Gnädinger F. Evaluation of remote sensing data for the assessment of vegetation health. Remote Sens. 2017;9(6):544. https://doi.org/10.3390/rs9060544
- 54. Latif G. The impact of remote sensing on environmental monitoring. Plants. 2022;11(17):2230. https://doi.org/10.3390/plants11172230
- 55. Reedha R. Remote sensing-based methods for crop monitoring and early warning. Remote Sens. 2022;14(3):592. https://doi.org/10.3390/rs14030592
- 56. Almalki FA. A study on sustainability in agriculture and remote sensing technologies. Sustainability. 2021;13(11):5908. https://doi.org/10.3390/su13115908
- 57. Gallo I. Evaluation of advanced remote sensing methods in agriculture. Remote Sens. 2023;15(2):539. https://doi.org/10.3390/rs15020539
- 58. Mesas-Carrascosa FJ. Remote sensing applications for soil health monitoring. Remote Sens. 2015;7(10):12793. https://doi.org/10.3390/rs71012793
- 59. Näsi R. Remote sensing techniques for environmental monitoring in agriculture. Remote Sens. 2018;10(7):1082. https://doi.org/10.3390/rs10071082
- 60. Alkhammash R. Bibliometric, network, and thematic mapping analyses of metaphor and discourse in COVID-19 publications from 2020 to 2022. Front Psychol. 2023;13:1062943. https://doi.org/10.3389/fpsyg.2022.1062943
- 61. Murphy KR, Cleveland JN. Understanding performance appraisal: Social, organizational, and goal-based perspectives. Sage Publications; 1995.
Downloads
Download data is not yet available.