Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical and cosmeceutical assessment of Carissa carandas L. extracts for skin lipoprotein protection

DOI
https://doi.org/10.14719/pst.10170
Submitted
21 June 2025
Published
24-12-2025

Abstract

Oxidative damage to skin lipoproteins is a critical factor in ageing and dermatological disorders, yet natural interventions targeting this pathway remain insufficiently studied so plant-based cosmeceuticals of Carissa carandas L. extracts to protect skin lipoproteins from oxidative stress and ageing-related damage. Fully ripened fruits and leaves, dried in powder form, were subjected to ultrasound-assisted extraction with 50 % ethanol. Antioxidant and antimicrobial potential were determined. The yield of fruits and leaves extracts was obtained up to 43.30 and 25.00 %, respectively. Bioactives profiling was done by high-performance liquid chromatography (HPLC), quantify the presence of phenolic and flavonoids. Moreover, fruits extract displayed significant potential for total phenolic content, total flavonoid content (TFC) and total carotenoid content (TCC) compared to the leaves extract. Fruits formulation exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition (84.9 %) compared to the leaves formulation (76.5 %). In the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, fruit extract (76.90 %) and formulation (86.28 %) showed higher scavenging activity than leaves extract (60.38 %) and formulation (68.60 %). Fruits extract exhibited a larger antibacterial and antifungal zone of inhibition using Staphylococcus aureus & Escherichia coli, Aspergillus niger and Aspergillus flavus than the formulation. Antiaging activities were optimized by inhibition of antiaging enzymes, i.e. tyrosinase, collagenase and elastase. Fruits and leaves formulation inhibited all three enzymes, exhibiting the best anti-ageing effect. The findings suggested that C. carandas fruits and leaves extracts phenolic components may be used as an anti-ageing ingredient in cosmetics.

References

  1. 1. Kumar S, Rana R, Yadav DK. Atomic-scale modeling of the effect of lipid peroxidation on the permeability of reactive species. J Biomol Struct Dyn. 2021;39(4):1284-94. https://doi.org/10.1080/07391102.2020.1730971
  2. 2. Wójcik P, Łuczaj W, Zarkovic N, Skrzydlewska E. Modulation of oxidative stress in psoriasis: pathophysiology and therapy. In: Saso L, Giuffrè A, Maccarrone M, editors. Modulation of oxidative stress. New York: Academic Press; 2023. p. 255-78. https://doi.org/10.1016/B978-0-443-19247-0.00014-x
  3. 3. Wroński A, Gęgotek A, Skrzydlewska E. Protein adducts with lipid peroxidation products in patients with psoriasis. Redox Biol. 2023;63:102729. https://doi.org/10.1016/j.redox.2023.102729
  4. 4. Papaccio F, Caputo S, Bellei B. Focus on the contribution of oxidative stress in skin aging. Antioxidants. 2022;11(6):1121. https://doi.org/10.3390/antiox11061121
  5. 5. Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, et al. Mechanism of action and therapeutic effects of oxidative stress and stem cell based materials in skin aging: current evidence and future perspectives. Front Bioengin Biotechnol. 2023;10:1082403. https://doi.org/10.3389/fbioe.2022.1082403
  6. 6. Tanveer MA, Rashid H, Tasduq SA. Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: a comprehensive review. Heliyon. 2023;9(3):e13580. https://doi.org/10.1016/j.heliyon.2023.e13580
  7. 7. Zhu S, Jia L, Wang X, Liu T, Qin W, Ma H, et al. Anti-aging formula protects skin from oxidative stress-induced senescence through the inhibition of CXCR2 expression. J Ethnopharmacol. 2024;318:116996. https://doi.org/10.1016/j.jep.2023.116996
  8. 8. Nema NK, Chaudhary SK, Kar A, Bahadur S, Harwansh RK, Haldar PK, et al. Bioactive leads for skin aging—current scenario and future perspectives. In: Mukurjee PK, editor. Evidence-based validation of herbal medicine. New York: Academic Press; 2022. p. 185-222. https://doi.org/10.1016/B978-0-323-85542-6.00020-2
  9. 9. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: their current status and future perspective. AAPS PharmSciTech. 2023;24(6):155. https://doi.org/10.1208/s12249-023-02616-6
  10. 10. Javed S, Abrar S, Arshad M. Sustainable cosmeceuticals. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-86087-4
  11. 11. Nemade CT, Baste NS, Bihani MM. Nutraceuticals and cosmeceuticals. In: Odoh UE, Gurav SS, Chukwuma MO, editors. Pharmacognosy and phytochemistry: principles, techniques and clinical applications. New York: John Wiley & Sons; 2025. p. 297-314. https://doi.org/10.1002/9781394203680.ch15
  12. 12. Dhatwalia J, Kumari A, Verma R, Upadhyay N, Guleria I, Lal S, et al. Phytochemistry, pharmacology and nutraceutical profile of Carissa species: an updated review. Molecules. 2021;26(22):7010. https://doi.org/10.3390/molecules26227010
  13. 13. Thitilertdecha N, Pintathong P. The antioxidant and anti-tyrosinase activities of Carissa carandas Linn. fruit extracts and their applications in cosmetics. Indian J Pharm Sci. 2022;84(5):101714. https://doi.org/10.36468/pharmaceutical-sciences.101714
  14. 14. Qasim M, Fujii Y, Ahmed MZ. Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosyst. 2019;153(6):767-74. https://doi.org/10.1080/11263504.2018.1549607
  15. 15. Mamillapalli V, Katamaneni M, Tiyyagura VM. Formulation, phytochemical, physical and biological evaluation of polyherbal vanishing cream and facewash. Res J Pharm Dosage Forms Technol. 2020;12(3):139-49. https://doi.org/10.5958/0975-4377.2020.00024.5
  16. 16. Ranjbar NE, Sadeghi Mahoonak A, Ghorbani M. Evaluation of antioxidant interactions in combined extracts of green tea (Camellia sinensis), rosemary (Rosmarinus officinalis) and oak fruit (Quercus branti). J Food Sci Technol. 2015;52:4565-71. https://doi.org/10.1007/s13197-014-1497-1
  17. 17. Maha HL, Sinaga KR, Masfria M. Formulation and evaluation of miconazole nitrate nanoemulsion and cream. Asian J Pharm Clin Res. 2018;11(3):319-21. https://doi.org/10.22159/ajpcr.2018.v11i3.22056
  18. 18. Cuhadar S, Koseoglu M, Atay A. The effect of storage time and freeze -thaw cycles on the stability of serum samples. Biochem Med. 2013;23(1):70-7. https://doi.org/10.11613/BM.2013.009
  19. 19. Mangilal T, Patnaik K, Sunder RS. Preparation and evaluation of polyherbal anti-aging cream by using different synthetic polymers. Int J Herbal Med. 2017;5(6):92-5.
  20. 20. Vasishth A, Kokliyal N, Joshi R. Allelopathic effects of tree species on germination and seedling growth of traditional crops of Garhwal Himalayas. Indian J Agrofor. 2020;22(2):56-61.
  21. 21. Kuchekar S, Bhise K. Formulation and development of antipsoriatic herbal gel cream. J Sci Ind Res. 2012;71(4):279-84.
  22. 22. Ram D, Pankhaniya H. Formulation, evaluation and optimization of sustained-release drug delivery system of cisapride tablet. Int J Pharm Pharm Sci. 2021;13(9):56-62. https://doi.org/10.22159/ijpps.2021v13i9.4179
  23. 23. Johari MA, Khong HY. Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv Pharmacol Pharm Sci. 2019;2019(1):7428593. https://doi.org/10.1155/2019/7428593
  24. 24. Shraim AM, Ahmed TA, Rahman MM. Determination of total flavonoid content by aluminum chloride assay: a critical evaluation. LWT. 2021;150:111932. https://doi.org/10.1016/j.lwt.2021.111932
  25. 25. Rahman M, Sabir AA, Mukta JA. Plant probiotic bacteria, Bacillus and Paraburkholderia, improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep. 2018;8(1):2504. https://doi.org/10.1038/s41598-018-20235-1
  26. 26. Lim S, Choi AH, Kwon M. Evaluation of antioxidant activities of various solvent extracts from Sargassum serratifolium and its major antioxidant components. Food Chem. 2019;278:178-84. https://doi.org/10.1016/j.foodchem.2018.11.058
  27. 27. Kim S, Oh S, Noh HB. In vitro antioxidant and anti-Propionibacterium acnes activities of cold water, hot water and methanol extracts and their respective ethyl acetate fractions, from Sanguisorba officinalis L. roots. Molecules. 2018;23(11):3001. https://doi.org/10.3390/molecules23113001
  28. 28. Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendide K, Remmal A. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. J Essent Oil Res. 2003;15(5):356-62. https://doi.org/10.1080/10412905.2003.9698611
  29. 29. Dorman HD, Deans SG. Chemical composition, antimicrobial and in vitro antioxidant properties of Monarda citriodora var. citriodora, Myristica fragrans, Origanum vulgare ssp. Hirtum, Pelargonium sp. and Thymus zygis oils. J Essent Oil Res. 2004;16(2):145-50. https://doi.org/10.1080/10412905.2004.9698679
  30. 30. Barwant M, Lavhate N. Isolation and maintenance of fungal pathogens Aspergillus niger and Aspergillus flavus. Int J Appl Nat Sci. 2020;9(3):47-52.
  31. 31. Rani AS, Babu S, Anbukumaran A. Prospective approaches of Pseudonocardia alaniniphila hydrobionts for Litopenaeus vannamei. In: Dhanasekaran D, Sankaranarayanan A, editors. Advances in probiotics. New York: Academic Press; 2021. p. 327-48. https://doi.org/10.1016/B978-0-12-822909-5.00021-6
  32. 32. Pintus F, Spano D, Corona A. Antityrosinase activity of Euphorbia characias extracts. Peer J. 2015;3:e1305. https://doi.org/10.7717/peerj.1305
  33. 33. Liyanaarachchi GD, Samarasekera JKRR, Mahanama KRR. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind Crops Prod. 2018;111:597-605. https://doi.org/10.1016/j.indcrop.2017.11.019
  34. 34. Kim S, Chen J, Cheng T. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373-80. https://doi.org/10.1093/nar/gkac956
  35. 35. Graef J, Ehrt C, Rarey MJ. Binding site detection remastered: enabling fast, robust and reliable binding site detection and descriptor calculation with DoGSite3. J Chem Inf Model. 2023;63 (10):3128-37. https://doi.org/10.1021/acs.jcim.3c00336
  36. 36. Rehman A, Bukhari SA, Akhter N. In silico identification of novel phytochemicals that target SFRP4: an early biomarker of diabesity. PLoS One. 2023;18(11):e0292155. https://doi.org/10.1371/journal.pone.0292155
  37. 37. Vaezi M. Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: review and new insight. J Biomol Struct Dyn. 2023;41(10):4798-810. https://doi.org/10.1080/07391102.2022.2069157
  38. 38. Şöhretoğlu D, Sari S, Barut B. Tyrosinase inhibition by some flavonoids: inhibitory activity, mechanism by in vitro and in silico studies. Bioorg Chem. 2018;81:168-74. https://doi.org/10.1016/j.bioorg.2018.08.020
  39. 39. Alruhaimi RS, Mahmoud AM, Alnasser SM. Integrating computational modeling and experimental validation to unveil tyrosinase inhibition mechanisms of flavonoids from Alhagi graecorum. ACS Omega. 2024;9(47):47167-79. https://doi.org/10.1021/acsomega.4c07624
  40. 40. Yoon MY. Study on the antioxidant and whitening effects of rutin as a cosmetic ingredient. J Korea Converg Soc. 2024;8(12):3149-55. https://doi.org/10.22156/CS4TB
  41. 41. Riaz R, Batool S, Zucca P, Rescigno A, Peddio S, Saleem RS. Plants as a promising reservoir of tyrosinase inhibitors. Mini-Rev Org Chem. 2021;18(6):808-28. https://doi.org/10.2174/1570193x17999201026230245
  42. 42. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62(15):1707-23. https://doi.org/10.1007/s00018-005-5054-y
  43. 43. Masum MN, Yamauchi K, Mitsunaga T. Tyrosinase inhibitors from natural and synthetic sources as skin-lightening agents. Rev Agric Sci. 2019;7:41-58. https://doi.org/10.7831/ras.7.41
  44. 44. Wawrzyńczak A. Cosmetic and pharmaceutical products with selected natural and synthetic substances for melasma treatment and methods of their analysis. Cosmetics. 2023;10(3):86. https://doi.org/10.3390/cosmetics10030086
  45. 45. Di PA. Natural and synthetic sources as antioxidants and inhibitors of tyrosinase [doctoral thesis]. Cagliari: University of Cagliari; 2018. Available from: https://hdl.handle.net/20.500.14242/70063
  46. 46. Varela MT, Ferrarini M, Mercaldi VG, da Silva Sufi B, Padovani G, Nazato LI, et al. Coumaric acid derivatives as tyrosinase inhibitors: efficacy studies through in silico, in vitro and ex vivo approaches. Bioorg Chem. 2020;103:104108. https://doi.org/10.1016/j.bioorg.2020.104108
  47. 47. Wang DH, Chung HS. Identification of anti-oxidant and antityrosinase activity of phenolic components isolated from Betula schmidtii. Korean J Food Nutr. 2021;34(5):553-9. https://doi.org/10.9799/ksfan.2021.34.5.553
  48. 48. Kumar S, Gupta P, Gupta KV. A critical review on karamarda (Carissa carandas Linn.). Int J Pharm Biol Arch. 2013;4:637-42.
  49. 49. Hameed F, Gupta N, Rahman R, Rai GK. Bioactive potential of karonda (Carissa carandas L.). Indian J Agric Biochem. 2021;34(1):24-32. https://doi.org/10.5958/0974-4479.2021.00003.4
  50. 50. Khuanekkaphan M, Khobjai W, Noysang C. Bioactivities of Karanda (Carissa carandas Linn.) fruit extracts for novel cosmeceutical applications. J Adv Pharm Technol Res. 2021;12(2):162-8. https://doi.org/10.4103/japtr.japtr_254_20
  51. 51. Neimkhum W, Anuchapreeda S, Lin WC, Lue SC, Lee KH, Chaiyana W. Effects of Carissa carandas Linn. fruit, pulp, leaf and seed on oxidation, inflammation, tyrosinase, matrix metalloproteinase, elastase and hyaluronidase inhibition. Antioxidants. 2021;10(9):1345. https://doi.org/10.3390/antiox10091345
  52. 52. Singh S, Bajpai M, Mishra P. Carissa carandas L.-phytopharmacological review. J Pharm Pharmacol. 2020;72(12):1694-714. https://doi.org/10.1111/jphp.13328
  53. 53. Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol. 2019;25(2):111-7. https://doi.org/10.1111/srt.12626
  54. 54. Thring TS, Hili P, Naughton DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Altern Med. 2009;9:27. https://doi.org/10.1186/1472-6882-9-27
  55. 55. Lourith N, Kanlayavattanakul M. Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci. 2009;31(4):255-61. https://doi.org/10.1111/j.1468-2494.2009.00493.x
  56. 56. Pawar SR, Patel P, Jain K. Herbal formulations: development, challenges, testing, stability and regulatory guidelines. In: Jain K, Yadav AK, editors. Advances in pharmaceutical product development. Singapore: Springer; 2025. p. 379-97. https://doi.org/10.1007/978-981-97-9230-6_15
  57. 57. Obaid RJ, Mughal EU, Naeem N, Sadiq A, Alsantali RI, Jassas RS, et al. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review. RSC Adv. 2021;11(36):22159-98. https://doi.org/10.1039/D1RA03196A
  58. 58. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58(2):85-90. https://doi.org/10.1016/j.jdermsci.2010.03.003
  59. 59. Shukri SM, Pardi F, Sidik NJ. In vitro anti-collagenase activity and total phenolic content of five selected herbs: a review. Sci Lett. 2021;15(1):117-27.
  60. 60. Lee SY, Baek N, Nam T. Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2016;31(1):1-13. https://doi.org/10.3109/14756366.2015.1004058
  61. 61. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(6):2440-75. https://doi.org/10.3390/ijms10062440
  62. 62. El Bouamri L, Bouachrine M, Chtita S. Computational studies in dermo-cosmetics: In silico discovery of therapeutic agents targeting a variety of proteins for skin diseases. Curr Top Med Chem. 2024;25(6):657-88. https://doi.org/10.2174/0115680266337405240926114604

Downloads

Download data is not yet available.