Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

From genetic markers to gene expression markers: A comprehensive review of methods and applications in associative transcriptomics

DOI
https://doi.org/10.14719/pst.10175
Submitted
22 June 2025
Published
17-10-2025

Abstract

Associative Transcriptomics (AT) is an advanced integrative approach that synergizes Genome Wide Association Studies (GWAS) with transcriptome profiling to unravel the complex genetic architecture underlying phenotypic traits. Unlike conventional GWAS, which relies solely on DNA marker polymorphism such as Single Nucleotide Polymorphisms (SNPs), AT incorporates both SNPs and Gene Expression Markers (GEMs), thereby enhancing the resolution and sensitivity of trait discovery. This dual-marker strategy is particularly valuable in genetically complex or polyploid species, where linkage disequilibrium patterns and gene redundancy often obscure signals in traditional analyses. Over the past decade, AT has emerged as a powerful tool for identifying trait-associated loci in several agriculturally important crops, including Brassica species and Triticum aestivum. The increasing availability of high-throughput sequencing platforms, combined with advancements in machine learning and statistical modelling, has accelerated the ability to integrate transcriptomic and genomic data on a large scale. Recent methodological innovations include the use of pan-transcriptomic references, co-expression networks and multi-omics integration to refine trait mapping. Despite its potential, AT faces ongoing challenges, including the management of population structure, transcriptome complexity across tissues and developmental stages and the dynamic influence of environmental factors on gene expression. AT holds considerable promise in supporting precision breeding programs, enabling targeted genetic interventions and advancing the development of climate-resilient crop varieties.

References

  1. 1. Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics. 1923;8(6):552. https://doi.org/10.1093/genetics/8.6.552
  2. 2. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121(1):185-99. https://doi.org/10.1093/genetics/121.1.185
  3. 3. Mackay I, Piepho HP, Garcia AAF. Statistical methods for plant breeding. Handbook of Statistical Genomics: Two Volume Set. 2019:501-20. https://doi.org/10.1002/9781119487845.ch17
  4. 4. Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics. 2009;10(8):565-77. https://doi.org/10.1038/nrg2612
  5. 5. Tanksley SD. Mapping polygenes. Annual Review of Genetics. 1993;27(1):205-33. https://doi.org/10.1146/annurev.ge.27.120193.001225
  6. 6. Des Marais DL, Hernandez KM, Juenger TE. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution and Systematics. 2013;44(1):5-29. https://doi.org/10.1146/annurev-ecolsys-110512-135806
  7. 7. Bernardo R. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Science. 2008;48(5):1649-64. https://doi.org/10.2135/cropsci2008.03.0131
  8. 8. Bevan M, Mayer K, White O, Eisen JA, Preuss D, Bureau T, et al. Sequence and analysis of the Arabidopsis genome. Current Opinion in Plant Biology. 2001;4(2):105-10. https://doi.org/10.1016/S1369-5266(00)00144-8
  9. 9. Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science. 2003;300(5617):286-90. https://doi.org/10.1126/science.1084564
  10. 10. Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, et al. Multi-omics revolution to promote plant breeding efficiency. Frontiers in Plant Science. 2022;13:1062952. https://doi.org/10.3389/fpls.2022.1062952
  11. 11. Harper AL, He Z, Langer S, Havlickova L, Wang L, Fellgett A, et al. Validation of an associative transcriptomics platform in the polyploid crop species Brassica juncea by dissection of the genetic architecture of agronomic and quality traits. The Plant Journal. 2020;103(5):1885-93. https://doi.org/10.1111/tpj.14876
  12. 12. Zhong W, Liu W, Chen J, Sun Q, Hu M, Li Y. Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants. Frontiers in Cell and Developmental Biology. 2022;10:957292. https://doi.org/10.3389/fcell.2022.957292
  13. 13. Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, et al. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology. 2012;30(8):798-802. https://doi.org/10.1038/nbt.2302
  14. 14. Stower H. Associative transcriptomics. Nature Reviews Genetics. 2012;13(9):597. https://doi.org/10.1038/nrg3318
  15. 15. Kittipol V, He Z, Wang L, Doheny-Adams T, Langer S, Bancroft I. Genetic architecture of glucosinolate variation in Brassica napus. Journal of Plant Physiology. 2019;240:152988. https://doi.org/10.1016/j.jplph.2019.06.001
  16. 16. Duitama J, Srivastava PK, Măndoiu II. Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics. 2012;13:1-10. https://doi.org/10.1186/1471-2164-13-S2-S6
  17. 17. Degtyareva AO, Antontseva EV, Merkulova TI. Regulatory SNPs: altered transcription factor binding sites implicated in complex traits and diseases. International Journal of Molecular Sciences. 2021;22(12):6454. https://doi.org/10.3390/ijms22126454
  18. 18. Mogil LS, Andaleon A, Badalamenti A, Dickinson SP, Guo X, Rotter JI, et al. Genetic architecture of gene expression traits across diverse populations. PLoS Genetics. 2018;14(8):e1007586. https://doi.org/10.1371/journal.pgen.1007586
  19. 19. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics. 2016;48(3):245-52. https://doi.org/10.1038/ng.3506
  20. 20. Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research. 2016;5:F1000 Faculty Rev-182. https://doi.org/10.12688/f1000research.7223.1
  21. 21. Rhaman MS, Ali M, Ye W, Li B. Opportunities and challenges in advancing plant research with single-cell omics. Genomics, Proteomics & Bioinformatics. 2024;22(2):qzae026. https://doi.org/10.1093/gpbjnl/qzae026
  22. 22. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Computational Biology. 2017;13(5):e1005457. https://doi.org/10.1371/journal.pcbi.1005457
  23. 23. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols. 2012;7(3):562-78. https://doi.org/10.1038/nprot.2012.016
  24. 24. Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications. 2017;8(1):15275. https://doi.org/10.1038/ncomms15275
  25. 25. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics. 2006;38(8):904-9. https://doi.org/10.1038/ng1847
  26. 26. Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature genetics. 2019;51(5):857-64. https://doi.org/10.1038/s41588-019-0401-3
  27. 27. Havlickova L, He Z, Wang L, Langer S, Harper AL, Kaur H, et al. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. The Plant Journal. 2018;93(1):181-92. https://doi.org/10.1111/tpj.13767
  28. 28. Miller CN, Harper AL, Trick M, Wellner N, Werner P, Waldron KW, Bancroft I. Dissecting the complex regulation of lodging resistance in Brassica napus. Molecular Breeding. 2018;38:1-18. https://doi.org/10.1007/s11032-018-0781-6
  29. 29. Xu Y, Li P, Yang Z, Xu C. Genetic mapping of quantitative trait loci in crops. The Crop Journal. 2017;5(2):175-84. https://doi.org/10.1016/j.cj.2016.06.003
  30. 30. Schielzeth H, Rios Villamil A, Burri R. Success and failure in replication of genotype-phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Molecular Ecology Resources. 2018;18(4):739-54. https://doi.org/10.1111/1755-0998.12780
  31. 31. Li P, Fan Y, Yin S, Wang Y, Wang H, Xu Y, et al. Multi-environment QTL mapping of crown root traits in a maize RIL population. The Crop Journal. 2020;8(4):645-54. https://doi.org/10.1016/j.cj.2019.12.006
  32. 32. Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annual review of plant biology. 2013;64(1):267-91. https://doi.org/10.1146/annurev-arplant-050312-120137
  33. 33. He S, Li X, Chen M, Xu X, Tang F, Gong T, et al. Crop HTP technologies: applications and prospects. Agriculture. 2024;14(5):723. https://doi.org/10.3390/agriculture14050723
  34. 34. Sul JH, Martin LS, Eskin E. Population structure in genetic studies: Confounding factors and mixed models. PLoS genetics. 2018;14(12):e1007309. https://doi.org/10.1371/journal.pgen.1007309
  35. 35. Miller CN, Harper AL, Trick M, Werner P, Waldron K, Bancroft I. Elucidation of the genetic basis of variation for stem strength characteristics in bread wheat by Associative Transcriptomics. BMC genomics. 2016;17:1-11. https://doi.org/10.1186/s12864-016-2775-2
  36. 36. Wood IP, Pearson BM, Garcia-Gutierrez E, Havlickova L, He Z, Harper AL, et al. Carbohydrate microarrays and their use for the identification of molecular markers for plant cell wall composition. Proceedings of the National Academy of Sciences. 2017;114(26):6860-5. https://doi.org/10.1073/pnas.1619033114
  37. 37. Ferguson JN, Fernandes SB, Monier B, Miller ND, Allen D, Dmitrieva A, et al. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. Plant Physiology. 2021;187(3):1481-500. https://doi.org/10.1093/plphys/kiab346
  38. 38. Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol. 2015;24(4):710-25. https://doi.org/10.1111/mec.13055
  39. 39. Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song B-H, et al. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics. 2021;22(1):453. https://doi.org/10.1186/s12864-021-07783-z
  40. 40. Li S, Liu J, Zhao M, Su Y, Cong B, Wang Z. RNA quality score evaluation: A preliminary study of RNA integrity number (RIN) and RNA integrity and quality number (RNA IQ). Forensic Science International. 2024;357:111976. https://doi.org/10.1016/j.forsciint.2024.111976
  41. 41. Lu W, Zhou Q, Chen Y. Impact of RNA degradation on next-generation sequencing transcriptome data. Genomics. 2022;114(4):110429. https://doi.org/10.1016/j.ygeno.2022.110429
  42. 42. Brown RA, Epis MR, Horsham JL, Kabir TD, Richardson KL, Leedman PJ. Total RNA extraction from tissues for microRNA and target gene expression analysis: not all kits are created equal. BMC Biotechnology. 2018;18:1-11. https://doi.org/10.1186/s12896-018-0421-6
  43. 43. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biology. 2006;7:1-14. https://doi.org/10.1186/1471-2199-7-3
  44. 44. Modi A, Vai S, Caramelli D, Lari M. The Illumina sequencing protocol and the NovaSeq 6000 system. Bacterial pangenomics: methods and protocols. Springer; 2021. p. 15-42. https://doi.org/10.1007/978-1-0716-1099-2_2
  45. 45. Lu G, Harper AL, Trick M, Morgan C, Fraser F, O'Neill C, Bancroft I. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Research. 2014;21(6):613-25. https://doi.org/10.1093/dnares/dsu024
  46. 46. Woodhouse S, He Z, Woolfenden H, Steuernagel B, Haerty W, Bancroft I, et al. Validation of a novel associative transcriptomics pipeline in Brassica oleracea: identifying candidates for vernalisation response. BMC Genomics. 2021;22:1-13. https://doi.org/10.1186/s12864-021-07805-w
  47. 47. Byrne A, Cole C, Volden R, Vollmers C. Realizing the potential of full-length transcriptome sequencing. Philosophical Transactions of the Royal Society B. 2019;374(1786):20190097. https://doi.org/10.1098/rstb.2019.0097
  48. 48. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics, Proteomics & Bioinformatics. 2015;13(5):278-89. https://doi.org/10.1016/j.gpb.2015.08.002
  49. 49. Zhao L, Zhang H, Kohnen MV, Prasad KV, Gu L, Reddy AS. Analysis of transcriptome and epitranscriptome in plants using PacBio Iso-Seq and nanopore-based direct RNA sequencing. Frontiers in Genetics. 2019;10:253. https://doi.org/10.3389/fgene.2019.00253
  50. 50. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genomics, Proteomics & Bioinformatics. 2016;14(5):265-79. https://doi.org/10.1016/j.gpb.2016.05.004
  51. 51. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology. 2016;17:1-11. https://doi.org/10.1186/s13059-016-1103-0
  52. 52. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. https://doi.org/10.1093/bioinformatics/btu170
  53. 53. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 2011;17(1):10-2. https://doi.org/10.14806/ej.17.1.200
  54. 54. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
  55. 55. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. https://doi.org/10.1093/bioinformatics/bts635
  56. 56. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 2015;12(4):357-60. https://doi.org/10.1038/nmeth.3317
  57. 57. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012;9(4):357-9. https://doi.org/10.1038/nmeth.1923
  58. 58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. https://doi.org/10.1093/bioinformatics/btp352
  59. 59. Higgins J, Magusin A, Trick M, Fraser F, Bancroft I. Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics. 2012;13:1-14. https://doi.org/10.1186/1471-2164-13-247
  60. 60. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010;20(9):1297-303. https://doi.org/10.1101/gr.107524.110
  61. 61. Richter F, Morton SU, Qi H, Kitaygorodsky A, Wang J, Homsy J, et al. Whole genome de novo variant identification with FreeBayes and neural network approaches. bioRxiv. 2020:2020.03.24.994160. https://doi.org/10.1101/2020.03.24.994160
  62. 62. Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nature Biotechnology. 2011;29(8):762-6. https://doi.org/10.1038/nbt.1926
  63. 63. Harrison PW, Amode MR, Austine-Orimoloye O, Azov AG, Barba M, Barnes I, et al. Ensembl 2024. Nucleic Acids Research. 2024;52(D1):D891-9.
  64. 64. Cingolani P. Variant annotation and functional prediction: SnpEff. Variant calling: methods and protocols. Springer; 2012. p. 289-314. https://doi.org/10.1007/978-1-0716-2293-3_19
  65. 65. Zhao S, Crouse W, Qian S, Luo K, Stephens M, He X. Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits. Nature Genetics. 2024;56(2):336-47. https://doi.org/10.1038/s41588-023-01648-9
  66. 66. Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources. 2012;4:359-61. https://doi.org/10.1007/s12686-011-9548-7
  67. 67. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics. 2007;81(3):559-75. https://doi.org/10.1086/519795
  68. 68. Pritchard JK, Wen X, Falush D. Documentation for structure software: Version 2.3. University of Chicago, Chicago, IL. 2010;1:37.
  69. 69. Popescu A-A, Huber KT. PSIKO2: a fast and versatile tool to infer population stratification on various levels in GWAS. Bioinformatics. 2015;31(21):3552-4. https://doi.org/10.1093/bioinformatics/btv396
  70. 70. Cook DE, Andersen EC. VCF-kit: assorted utilities for the variant call format. Bioinformatics. 2017;33(10):1581-2. https://doi.org/10.1093/bioinformatics/btx011
  71. 71. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-5. https://doi.org/10.1093/bioinformatics/bth457
  72. 72. Ecke W, Clemens R, Honsdorf N, Becker HC. Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics. 2010;120:921-31. https://doi.org/10.1007/s00122-009-1221-0
  73. 73. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics. 2006;38(2):203-8. https://doi.org/10.1038/ng1702
  74. 74. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633-5. https://doi.org/10.1093/bioinformatics/btm308
  75. 75. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397-9. https://doi.org/10.1093/bioinformatics/bts444
  76. 76. Kusmec A, Schnable PS. FarmCPUpp: efficient large-scale genomewide association studies. Plant Direct. 2018;2(4):e00053. https://doi.org/10.1002/pld3.53
  77. 77. Zhang Y-W, Tamba CL, Wen Y-J, Li P, Ren W-L, Ni Y-L, et al. mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies. Genomics Proteomics Bioinformatics. 2020;18(4):481-7. https://doi.org/10.1016/j.gpb.2020.06.006
  78. 78. Wen Y, Zhang Y, Zhang J, Feng J, Zhang Y. The improved FASTmrEMMA and GCIM algorithms for genome-wide association and linkage studies in large mapping populations. The Crop Journal. 2020;8(5):723-32. https://doi.org/10.1016/j.cj.2020.04.008
  79. 79. Tamba CL, Ni Y-L, Zhang Y-M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Computational Biology. 2017;13(1):e1005357. https://doi.org/10.1371/journal.pcbi.1005357
  80. 80. Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience. 2019;8(2):giy154. https://doi.org/10.1093/gigascience/giy154
  81. 81. Sahu TK, Verma SK, Gayacharan, Singh NP, Joshi DC, Wankhede D, et al. Transcriptome-wide association mapping provides insights into the genetic basis and candidate genes governing flowering, maturity and seed weight in rice bean (Vigna umbellata). BMC Plant Biology. 2024;24(1):379. https://doi.org/10.1186/s12870-024-04976-y
  82. 82. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences. 2003;100(16):9440-5. https://doi.org/10.1073/pnas.1530509100
  83. 83. Wade AR, Duruflé H, Sanchez L, Segura V. eQTLs are key players in the integration of genomic and transcriptomic data for phenotype prediction. BMC Genomics. 2022;23(1):476. https://doi.org/10.1186/s12864-022-08690-7
  84. 84. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:1-13. https://doi.org/10.1186/1471-2105-9-559
  85. 85. Harper AL, McKinney LV, Nielsen LR, Havlickova L, Li Y, Trick M, et al. Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics. Scientific Reports. 2016;6(1):19335. https://doi.org/10.1038/srep19335
  86. 86. Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A, Gupta V, et al. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal. 2021;19(3):602-14. https://doi.org/10.1111/pbi.13492
  87. 87. Jayakodi M, Schreiber M, Stein N, Mascher M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Research. 2021;28(1):dsaa030. https://doi.org/10.1093/dnares/dsaa030
  88. 88. Sollars ES, Buggs RJ. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics. 2018;19:1-15. https://doi.org/10.1186/s12864-018-4874-8
  89. 89. Franco Ortega S, Bedford JA, James SR, Newling K, Ashton PD, Boshier DH, et al. Fraxinus excelsior updated long-read genome reveals the importance of MADS-box genes in tolerance mechanisms against ash dieback. bioRxiv. 2024:2024.12.20.629733. https://doi.org/10.1101/2024.12.20.629733
  90. 90. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. Nature Plants. 2020;6(8):914-20. https://doi.org/10.1038/s41477-020-0733-0
  91. 91. Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Briefings in Bioinformatics. 2022;23(5):bbac191. https://doi.org/10.1093/bib/bbac191
  92. 92. Ahmad S, Shahzad R, Jamil S, Tabassum J, Chaudhary MAM, Atif RM, et al. Regulatory aspects, risk assessment and toxicity associated with RNAi and CRISPR methods. CRISPR and RNAi systems. Elsevier; 2021. p. 687-721. https://doi.org/10.1016/B978-0-12-821910-2.00013-8
  93. 93. Koprivova A, Harper AL, Trick M, Bancroft I, Kopriva S. Dissection of the control of anion homeostasis by associative transcriptomics in Brassica napus. Plant Physiology. 2014;166(1):442-50. https://doi.org/10.1104/pp.114.239947
  94. 94. Alcock TD, Havlickova L, He Z, Bancroft I, White PJ, Broadley MR, et al. Identification of candidate genes for calcium and magnesium accumulation in Brassica napus L. by association genetics. Frontiers in Plant Science. 2017;8:1968. https://doi.org/10.3389/fpls.2017.01968
  95. 95. Hejna O, Havlickova L, He Z, Bancroft I, Curn V. Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. Molecular Breeding. 2019;39:1-13. https://doi.org/10.1007/s11032-019-1021-4
  96. 96. Huang Y, Hussain MA, Luo D, Xu H, Zeng C, Havlickova L, et al. A Brassica napus reductase gene dissected by associative transcriptomics enhances plant adaption to freezing stress. Frontiers in Plant Science. 2020;11:971. https://doi.org/10.3389/fpls.2020.00971
  97. 97. Xu J, Zhan H, Xie Y, Tian G, Xie L, Xu B, et al. Associative transcriptomics study dissects the genetic architecture of seedling biomass-related traits in rapeseed (Brassica napus L.). Plant Breeding. 2021;140(2):285-93. https://doi.org/10.1111/pbr.12898
  98. 98. Jacott CN, Schoonbeek HJ, Sidhu GS, Steuernagel B, Kirby R, Zheng X, et al. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus). Theoretical and Applied Genetics. 2024;137(3):65. https://doi.org/10.1007/s00122-024-04569-1
  99. 99. Yalcin HA, Jacott CN, Ramirez-Gonzalez RH, Steuernagel B, Sidhu GS, Kirby R, et al. A complex receptor locus confers responsiveness to necrosis and ethylene-inducing like peptides in Brassica napus. The Plant Journal. 2024;119(1):266-82. https://doi.org/10.1111/tpj.16760
  100. 100. Liu Q, Xie Y, Liu B, Yin H, Zhou Z, Feng Z, et al. A transcriptomic variation map provides insights into the genetic basis of Pinus massoniana Lamb. evolution and the association with oleoresin yield. BMC Plant Biology. 2020;20:1-14. https://doi.org/10.1186/s12870-020-02577-z

Downloads

Download data is not yet available.