Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Integrating optical and SAR data for improved mangrove mapping: Performance analysis of OSCMI versus random forest classifier

DOI
https://doi.org/10.14719/pst.10180
Submitted
22 June 2025
Published
14-10-2025

Abstract

Mangrove Forest (MF) extents and distributions are fundamental for conservation and restoration efforts. According to previous studies, Landsat and Sentinel-2 imageries are widely used for mangrove area mapping. There are also several vegetation indices from optical data for mangroves used to discriminate mangrove from other vegetation. Still, their performance is not satisfactory, especially due to their presence in the intertidal region. To address this limitation, Sentinel-1A SAR images are integrated with optical datasets for mangrove extent mapping. In this study, we have compared mangrove area obtained from two methods, first one is supervised classification using random forest classifier integrating vegetation indices with Sentinel-2 optical datasets. Another approach is threshold segmentation using combined optical and SAR images, as well as the Combined Mangrove Index (CMCI) with VV polarization. The result shows OSCMI based classification yield best results and outperforms random forest classification by optical data. Mangrove area estimated for the study area by OSCMI classification was 2027 ha with the overall accuracy of 84.7 % and kappa coefficient of 0.66. This shows integrating SAR data for mangrove area extraction improves accuracy.  

References

  1. 1. India. Forest Survey of India. India state of the forest report 2023. Dehradun: Ministry of Environment, Forest and Climate Change; 2023
  2. 2. India. Tamil Nadu Green Climate Company. Mangroves of Tamil Nadu: coastal green warriors. Chennai: Department of Environment, Climate Change and Forest, Government of Tamil Nadu; 2024
  3. 3. Ward RD, Friess DA, Day RH, Mackenzie RA. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst Health Sustain. 2016;2(4):e01211. https://doi.org/10.1002/ehs2.1211
  4. 4. Alongi DM. Global meta-analysis of mangrove primary production: implications for carbon cycling in mangrove and other coastal ecosystems. Forests. 2025;16(5):747. https://doi.org/10.3390/f16050747
  5. 5. Sun Y, Zhao D, Guo W, Gao Y, Su X, Wei B. A review on the application of remote sensing in mangrove ecosystem monitoring. Acta Ecol Sin. 2013;33(15):4523-38. https://doi.org/10.5846/stxb201205150715
  6. 6. Conchedda G, Durieux L, Mayaux P. Object-based monitoring of land cover changes in mangrove ecosystems of Senegal. In: Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images; 2007 Jul 18-20; Leuven, Belgium. Piscataway (NJ): IEEE; 2007. p. 1-6. https://doi.org/10.1109/MULTITEMP.2007.4293039
  7. 7. Hidayah Z. Application of remote sensing in mangrove studies: a literature review. Jurnal Kelautan Indones J Mar Sci Technol. 2010;3(1):48-53.
  8. 8. Salghuna N, Pillutla R. Mapping mangrove species using hyperspectral data: a case study of Pichavaram mangrove ecosystem, Tamil Nadu. Earth Syst Environ. 2017;1:1-12. https://doi.org/10.1007/s41748-017-0024-8
  9. 9. Ghorai D, Mahapatra M, Paul AK. Application of remote sensing and GIS techniques for decadal change detection of mangroves along Tamil Nadu coast, India. J Remote Sensing GIS. 2016;7(1):42-53.
  10. 10. Huang K, Yang G, Yuan Y, Sun W, Meng X, Ge Y. Optical and SAR images combined mangrove index based on multi-feature fusion. Sci Remote Sens. 2022;5:100040. https://doi.org/10.1016/j.srs.2022.100040
  11. 11. Xue J, Su B. Significant remote sensing vegetation indices: a review of developments and applications. J Sensors. 2017;2017(1):1353691. https://doi.org/10.1155/2017/1353691
  12. 12. Wang J, Xiao X, Bajgain R, Starks P, Steiner J, Doughty RB, et al. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J Photogramm Remote Sens. 2019;154:189-201. https://doi.org/10.1016/j.isprsjprs.2019.06.007
  13. 13. Zhao C, Qin CZ. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS J Photogramm Remote Sens. 2020;169:389-405. https://doi.org/10.1016/j.isprsjprs.2020.10.001
  14. 14. Xia Q, Qin CZ, Li H, Huang C, Su FZ. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sens. 2018;10(9):1343. https://doi.org/10.3390/rs10091343
  15. 15. Xia Q, Qin CZ, Li H, Huang C, Su FZ, Jia MM. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol Indic. 2020;113:106196. https://doi.org/10.1016/j.ecolind.2020.106196
  16. 16. Zhang H, Wang T, Liu M, Jia M, Lin H, Chu L, et al. Potential of combining optical and dual polarimetric SAR data for improving mangrove species discrimination using rotation forest. Remote Sens. 2018;10(3):467. https://doi.org/10.3390/rs10030467
  17. 17. Selvaraj A, Saravanan S, Rani N. Development of spectral library of mangrove native species of the Muthupet lagoon, Tamil Nadu, India using field spectroscopic instrument. Indian J Geo-Mar Sci. 2020;49(5):809-15.
  18. 18. Amani M, Ghorbanian A, Ahmadi SA, Kakooei M, Moghimi A, Mirmazloumi SM, et al. Google Earth Engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J Sel Top Appl Earth Obs Remote Sens. 2020;13:5326-50. https://doi.org/10.1109/JSTARS.2020.3021052
  19. 19. Tran TV, Reef R, Zhu X. A review of spectral indices for mangrove remote sensing. Remote Sens. 2022;14(19):4868. https://doi.org/10.3390/rs14194868
  20. 20. Upakankaew K, Ninsawat S, Virdis SG, Sasaki N. Discrimination of mangrove stages using multitemporal Sentinel-1 C-band backscatter and Sentinel-2 data: a case study in Samut Songkhram Province, Thailand. Forests. 2022;13(9):1433. https://doi.org/10.3390/f13091433
  21. 21. Winarso G, Purwanto AD. Evaluation of mangrove damage level based on Landsat 8 image. Int J Remote Sens Earth Sci. 2017;11(2):105-16. https://doi.org/10.30536/j.ijreses.2014.v11.a2608
  22. 22. Gupta K, Mukhopadhyay A, Giri S, Chanda A, Majumdar SD, Samanta S, et al. An index for discrimination of mangroves from non-mangroves using Landsat 8 OLI imagery. MethodsX. 2018;5:1129-39. https://doi.org/10.1016/j.mex.2018.09.011
  23. 23. Cherian SM, Kanjirappuzha R. Random forest and support vector machine classifiers for coastal wetland characterization using the combination of features derived from optical data and synthetic aperture radar dataset. J Water Climate Change. 2024;15(1):29-49. https://doi.org/10.2166/wcc.2023.238
  24. 24. Shen Z, Miao J, Wang J, Zhao D, Tang A, Zhen J. Evaluating feature selection methods and machine learning algorithms for mapping mangrove forests using optical and synthetic aperture radar data. Remote Sens. 2023;15(23):5621. https://doi.org/10.3390/rs15235621
  25. 25. Jhonnerie R, Siregar VP, Nababan B. Comparison of random forest algorithm implemented on object and pixel based classification for mangrove land cover mapping. ICST. 2017;1:292-302.
  26. 26. Purwanto AD, Wikantika K, Deliar A, Darmawan S. Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang National Park, Indonesia. Remote Sens. 2022;15(1):16. https://doi.org/10.3390/rs15010016
  27. 27. Intarat K, Sillaparat S. Tropical mangrove species classification using random forest algorithm and very high-resolution satellite imagery. Burapha Sci J. 2019:742-53.
  28. 28. Fang X, Ying Z, Liang Z, Jia L, Xianghui G. Extraction method of intertidal mangrove by using Sentinel-2 images. Bull Surv Mapping. 2020(2):49.
  29. 29. Jia M, Wang Z, Wang C, Mao D, Zhang Y. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sens. 2019;11(17):2043. https://doi.org/10.3390/rs11172043
  30. 30. Amalo L, Setiawan Y, Kusmana C. Spatio-temporal dynamics of mangrove extent in coastal Bekasi Regency, Indonesia. In: IOP Conference Series: Earth and Environmental Science; 2023 Jul 10-12; Bekasi, Indonesia. Bristol: IOP Publishing; 2023. p. 012005. https://doi.org/10.1088/1755-1315/1266/1/012005
  31. 31. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011;20(1):154-9. https://doi.org/10.1111/j.1466-8238.2010.00584.x
  32. 32. Akbar M, Arisanto P, Sukirno B, Merdeka P, Priadhi M, Zallesa S. Mangrove vegetation health index analysis by implementing NDVI classification method on Sentinel-2 image data: case study Segara Anakan, Kabupaten Cilacap. In: IOP Conference Series: Earth and Environmental Science; 2020 Oct 14-16; Cilacap, Indonesia. Bristol: IOP Publishing; 2020. p. 012069. https://doi.org/10.1088/1755-1315/584/1/012069
  33. 33. Heumann BW. Satellite remote sensing of mangrove forests: recent advances and future opportunities. Prog Phys Geogr. 2011;35(1):87-108. https://doi.org/10.1177/0309133310385371
  34. 34. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 2006;27(14):3025-33. https://doi.org/10.1080/01431160600589179
  35. 35. Lucas R, Van De Kerchove R, Otero V, Lagomasino D, Fatoyinbo L, Omar H, et al. Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens Environ. 2020;237:111543. https://doi.org/10.1016/j.rse.2019.111543
  36. 36. Singgalen YA, Manongga D. Monitoring of mangrove ecotourism area using NDVI, NDWI and CMRI in Dodola Island, Morotai Island Regency, Indonesia. J Ilmu Teknol Kelaut Tropis. 2022;14(1):95-108. https://doi.org/10.29244/jitkt.v14i1.37605
  37. 37. Kuenzer C, Bluemel A, Gebhardt S, Quoc TV, Dech S. Remote sensing of mangrove ecosystems: a review. Remote Sens. 2011;3(5):878-928. https://doi.org/10.3390/rs3050878
  38. 38. T.N.’s mangrove cover grows to 9,039 ha in 2024, has significant carbon stock: report. The Hindu. 2025 Mar 16 https://tinyurl.com/3pucp6v7
  39. 39. Dronova I. Object-based image analysis in wetland research: a review. Remote Sens. 2015;7(5):6380-413. https://doi.org/10.3390/rs70506380
  40. 40. Zablan C, Blanco A, Nadaoka K, Martinez K, Baloloy A. Assessment of mangrove extent extraction accuracy of threshold segmentation-based indices using Sentinel imagery. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2023;48:391-401. https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-391-2023
  41. 41. Xu Z, Chen KS. On signal modeling of moon-based synthetic aperture radar imaging of earth. Remote Sens. 2018;10(3):486. https://doi.org/10.3390/rs10030486
  42. 42. Belgiu M, Dragut L. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 2016;114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Downloads

Download data is not yet available.