Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Role of microbiome associations in developing high yield and sustainable rice varieties

DOI
https://doi.org/10.14719/pst.10229
Submitted
24 June 2025
Published
24-10-2025

Abstract

Rice, the staple food crop of half of the world population, is challenged by biotic and abiotic stresses which affect its productivity. Sustainable rice production will ensure safeguard food security.  It involves genetic background, climate and soil factors. Development of low-input response varieties by genetically associating microbiomes involved in functional activities of rice growth and development offers scope for sustainability. This review focuses on genetics influence on microbiome connections and use of these microbiome associations to create low-input responsive rice varieties. Root exudates from traditional varieties with specific traits and unique microbiomes associations can prove useful in developing low-input rice varieties. Analysis of functional traits such as nutrient mobilization, resistance to pests and adaptation for abiotic stresses in various germplasm lines can help identify suitable parent plants for breeding. Study of the genetic mechanisms of microbiome association through QTL mapping and transcriptomic analysis identifying the genomic regions regulating the microbiome-related traits. Traditional breeding methods, marker-assisted techniques and rapid generation advancement strategies can be used to develop lines for evaluation. It involves screening methods, identification of selection parameters, inheritance pattern and optimization of field plot conditions need to be considered while developing the superior varieties. The evaluation pattern will be studied in various trials for studying the genotype x environment interactions and better lines will be identified for varietal release. The low-input response rice variety will be able to deploy specific microbes for functional activities.

References

  1. 1. FAO. World food and agriculture - statistical yearbook 2023. Rome; 2023
  2. 2. Zhao C, Liu G, Chen Y, Jiang Y, Shi Y, Zhao L, et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture. 2022;12(7):962. https://doi.org/10.3390/agriculture12070962
  3. 3. Adhikari A, Kwon EH, Khan MA, Shaffique S, Kang SM, Lee IJ. Enhanced use of chemical fertilizers and mitigation of heavy metal toxicity using biochar and the soil fungus Bipolaris maydis AF7 in rice: genomic and metabolomic perspectives. Ecotoxicol Environ Saf. 2024;271:115938. https://doi.org/10.1016/j.ecoenv.2024.115938
  4. 4. Du F, Yang Z, Liu P, Wang L. Accumulation, translocation and assessment of heavy metals in the soil-rice systems near a mine-impacted region. Environ Sci Pollut Res Int. 2018;25(32):32221-30. https://doi.org/10.1007/s11356-018-3184-7
  5. 5. Zhong Y, Hu J, Xia Q, Zhang S, Li X, Pan X, et al. Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biol Biochem. 2020;143:107741. https://doi.org/10.1016/j.soilbio.2020.107741
  6. 6. Yin Y, Wang YF, Cui HL, Zhou R, Li L, Duan GL, et al. Distinctive structure and assembly of phyllosphere microbial communities between wild and cultivated rice. Microbiol Spectr. 2023;11(1):e04371-22. https://doi.org/10.1128/spectrum.04371-22
  7. 7. Nicotra D, Ghadamgahi F, Ghosh S, Anzalone A, Dimaria G, Mosca A, et al. Genomic insights and biocontrol potential of ten bacterial strains from the tomato core microbiome. Front Plant Sci. 2024;15:1437947. https://doi.org/10.3389/fpls.2024.1437947
  8. 8. Walitang DI, Roy Choudhury A, Subramanian P, Lee Y, Choi G, Cho K, et al. Microbe-responsive proteomes during plant-microbe interactions between rice genotypes and the multifunctional Methylobacterium oryzae CBMB20. Rice. 2023;16(1):23. https://doi.org/10.1186/s12284-023-00639-y
  9. 9. Wang Z, Song Y. Toward understanding the genetic bases underlying plant-mediated "cry for help" to the microbiota. iMeta. 2022;1(1):e8. https://doi.org/10.1002/imt2.8
  10. 10. Barnes CJ, Bahram M, Nicolaisen M, Gilbert MTP, Vestergård M. Microbiome selection and evolution within wild and domesticated plants. Trends Microbiol. 2025;33(4):447-58. https://doi.org/10.1016/j.tim.2024.11.011
  11. 11. Singh A, Kumar M, Chakdar H, Pandiyan K, Kumar SC, Zeyad MT, et al. Influence of host genotype in establishing root associated microbiome of indica rice cultivars for plant growth promotion. Front Microbiol. 2022;13:1033158. https://doi.org/10.3389/fmicb.2022.1033158
  12. 12. Michl K, Berg G, Cernava T. The microbiome of cereal plants: the current state of knowledge and the potential for future applications. Environ Microbiome. 2023;18(1):28. https://doi.org/10.1186/s40793-023-00484-y
  13. 13. Orozco-Mosqueda M del C, Rocha-Granados M del C, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25-31. https://doi.org/10.1016/j.micres.2018.01.005
  14. 14. Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, et al. Harnessing microbial interactions with rice: strategies for abiotic stress alleviation in the face of environmental challenges and climate change. Science of The Total Environment. 2024;912:168847. https://doi.org/10.1016/j.scitotenv.2023.168847
  15. 15. Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: diversity and functions. Microbiol Res. 2022;254:126888. https://doi.org/10.1016/j.micres.2021.126888
  16. 16. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10(12):828-40. https://doi.org/10.1038/nrmicro2910
  17. 17. Tran DM, Nguyen TH. Rice (Oryza sativa L.) cultivated in the central highlands of Vietnam: dataset on the endophytic microbiome. Data Brief. 2023;50:109551. https://doi.org/10.1016/j.dib.2023.109551
  18. 18. Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, et al. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res. 2021;245:126690. https://doi.org/10.1016/j.micres.2020.126690
  19. 19. Doni F, Suhaimi NSM, Mispan MS, Fathurrahman F, Marzuki BM, Kusmoro J, et al. Microbial contributions for rice production: from conventional crop management to the use of 'omics' technologies. Int J Mol Sci. 2022;23(2):737. https://doi.org/10.3390/ijms23020737
  20. 20. Zhang J, Wang B, Xu H, Liu W, Yu J, Wang Q, et al. Root microbiota regulates tiller number in rice. Cell. 2025;188(12):3152-66.e16. https://doi.org/10.1016/j.cell.2025.03.033
  21. 21. Deschênes T, Tohoundjona FWE, Plante PL, Di Marzo V, Raymond F. Gene-based microbiome representation enhances host phenotype classification. mSystems. 2023;8(4):e00531-23. https://doi.org/10.1128/msystems.00531-23
  22. 22. Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol (Stuttg). 2016;18(4):627-37. https://doi.org/10.1111/plb.12441
  23. 23. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 2012;6(7):1378-90. https://doi.org/10.1038/ismej.2011.192
  24. 24. Sanjenbam P, Shivaprasad PV, Agashe D. Impact of phyllosphere Methylobacterium on host rice landraces. Microbiol Spectr. 2022;10(4):e00810-22. https://doi.org/10.1128/spectrum.00810-22
  25. 25. Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, et al. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. Environ Microbiome. 2022;17(1):28. https://doi.org/10.1186/s40793-022-00421-5
  26. 26. Thapa S, Prasanna R, Ranjan K, Velmourougane K, Ramakrishnan B. Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol Res. 2017;204:55-64. https://doi.org/10.1016/j.micres.2017.07.007
  27. 27. Masuda S, Gan P, Kiguchi Y, Anda M, Sasaki K, Shibata A, et al. Uncovering microbiomes of the rice phyllosphere using long-read metagenomic sequencing. Commun Biol. 2024;7(1):357. https://doi.org/10.1038/s42003-024-05998-w
  28. 28. Ahumada GD, Gómez-Álvarez EM, Dell'Acqua M, Bertani I, Venturi V, Perata P, et al. Bacterial endophytes contribute to rice seedling establishment under submergence. Front Plant Sci. 2022;13:908349. https://doi.org/10.3389/fpls.2022.908349
  29. 29. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911-20. https://doi.org/10.1073/pnas.1414592112
  30. 30. Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, et al. Endophytic bacterial communities in wild rice (Oryza officinalis) and their plant growth-promoting effects on perennial rice. Front Plant Sci. 2023;14:1184489. https://doi.org/10.3389/fpls.2023.1184489
  31. 31. Liu Y, Zhao K, Stirling E, Wang X, Gao Z, Ma B, et al. Heterosis of endophytic microbiomes in hybrid rice varieties improves seed germination. mSystems. 2024;9(5):e00004-24. https://doi.org/10.1128/msystems.00004-24
  32. 32. Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8(4):e00764-17. https://doi.org/10.1128/mBio.00764-17
  33. 33. Qian H, Zhu Y, Chen S, Jin Y, Lavoie M, Ke M, et al. Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification. Pestic Biochem Physiol. 2018;146:90-6. https://doi.org/10.1016/j.pestbp.2018.03.002
  34. 34. Li K, Wang C, Ow DW. Root microbiome changes associated with cadmium exposure and/or overexpression of a transgene that reduces Cd content in rice. Ecotoxicol Environ Saf. 2022;237:113530. https://doi.org/10.1016/j.ecoenv.2022.113530
  35. 35. Chinta YD, Araki H. Responses of bulk and rhizosphere soil microbiomes to different cover crop inputs and their connection and contribution to soil fertility and plant growth. Pedobiologia. 2023;101:150907. https://doi.org/10.1016/j.pedobi.2023.150907
  36. 36. Liu T, Wei J, Yang J, Wang H, Wu B, He P, et al. Polyaspartic acid facilitated rice production by reshaping soil microbiome. Appl Soil Ecol. 2023;191:105056. https://doi.org/10.1016/j.apsoil.2023.105056
  37. 37. Andreo-Jimenez B, te Beest DE, Kruijer W, Vannier N, Kadam NN, Melandri G, et al. Genetic mapping of the root mycobiota in rice and its role in drought tolerance. Rice. 2023;16(1):26. https://doi.org/10.1186/s12284-023-00641-4
  38. 38. Su P, Kang H, Peng Q, Wicaksono WA, Berg G, Liu Z, et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun. 2024;15(1):23. https://doi.org/10.1038/s41467-023-44335-3
  39. 39. Chen M, Feng S, Lv H, Wang Z, Zeng Y, Shao C, et al. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake. BMC Plant Biol. 2024;24(1):285. https://doi.org/10.1186/s12870-024-04982-0
  40. 40. Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res. 2024;279:127564. https://doi.org/10.1016/j.micres.2023.127564
  41. 41. Tong Y, Zheng X, Hu Y, Wu J, Liu H, Deng Y, et al. Root exudate- mediated plant-microbiome interactions determine plant health during disease infection. Agric Ecosyst Environ. 2024;370:109056. https://doi.org/10.1016/j.agee.2024.109056
  42. 42. Alahmad A, Harir M, Fochesato S, Tulumello J, Walker A, Barakat M, et al. Unraveling the interplay between root exudates, microbiota and rhizosheath formation in pearl millet. Microbiome. 2024;12(1):1. https://doi.org/10.1186/s40168-023-01727-3
  43. 43. Letuma P, Arafat Y, Waqas M, Lin F, Lin W, Zhang Y, et al. Gene mutation associated with esl mediates shifts on fungal community composition in rhizosphere soil of rice at grain-filling stage. Sci Rep. 2018;8(1):17521. https://doi.org/10.1038/s41598-018-35578-y
  44. 44. Afridi MS, Javed MA, Ali S, de Medeiros FHV, Ali B, Salam A, et al. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front Plant Sci. 2022;13:899464. https://doi.org/10.3389/fpls.2022.899464
  45. 45. Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: navigating sequencing tools, microbial assembly and functions to amplify plant fitness. Microbiol Res. 2024;279:127549. https://doi.org/10.1016/j.micres.2023.127549
  46. 46. Quiza L, Tremblay J, Pagé AP, Greer CW, Pozniak CJ, Li R, et al. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Commun. 2023;3(1):32. https://doi.org/10.1038/s43705-023-00238-4
  47. 47. Michl K, David C, Dumont B, Mårtensson LMD, Rasche F, Berg G, et al. Determining the footprint of breeding in the seed microbiome of a perennial cereal. Environ Microbiome. 2024;19(1):40. https://doi.org/10.1186/s40793-024-00584-3
  48. 48. Banik A, Mukhopadhaya SK, Dangar TK. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta. 2015;243(3):799-812. https://doi.org/10.1007/s00425-015-2444-8
  49. 49. Fornasiero A, Wing RA, Ronald P. Rice domestication. Curr Biol. 2022;32(1):R20-4. https://doi.org/10.1016/j.cub.2021.11.025
  50. 50. Jiang M, Wang Z, Li X, Liu S, Song F, Liu F. Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Sci Total Environ. 2021;776:146029. https://doi.org/10.1016/j.scitotenv.2021.146029
  51. 51. Bamba M, Akyol TY, Azuma Y, Quilbe J, Andersen SU, Sato S. Synergistic effects of plant genotype and soil microbiome on growth in Lotus japonicus. FEMS Microbiol Ecol. 2024;100(5):fiae056. https://doi.org/10.1093/femsec/fiae056
  52. 52. Fatema K, Mahmud NU, Gupta DR, Siddiqui MN, Sakif TI, Sarker A, et al. Enhancing rice growth and yield with weed endophytic bacteria Alcaligenes faecalis and Metabacillus indicus under reduced chemical fertilization. PLoS One. 2024;19(5):e0296547. https://doi.org/10.1371/journal.pone.0296547
  53. 53. Bandyopadhyay P, Yadav BG, Kumar SG, Kumar R, Kogel KH, Kumar S. Piriformospora indica and Azotobacter chroococcum consortium facilitates higher acquisition of N, P with improved carbon allocation and enhanced plant growth in Oryza sativa. J Fungi (Basel). 2022;8(5):453. https://doi.org/10.3390/jof8050453
  54. 54. Mahreen N, Yasmin S, Asif M, Yahya M, Ejaz K, Mehboob-Ur-Rahman, et al. Mitigation of water scarcity with sustained growth of rice by plant growth promoting bacteria. Front Plant Sci. 2023;14:1081537. https://doi.org/10.3389/fpls.2023.1081537
  55. 55. Pico Y, Paz R, Rayo S. Optimizing iron, manganese and zinc fertilization in rice (Oryza sativa L.) through Bacillus, Pseudomonas and Azospirillum bacteria. Rev Fac Cienc Básicas. 2024;18:83-101. https://doi.org/10.18359/rfcb.7055
  56. 56. Srija A, Latha PC, Tejashree M, Reddy K, Triveni S, Bandeppa S, et al. Identification and in vitro evaluation of environmental stress resilient plant growth promoting rhizobacterial consortia for rice (Oryza sativa L.). Int J Environ Clim Change. 2022;12(11):3340-54. https://doi.org/10.9734/ijecc/2022/v12i111384
  57. 57. Thamvithayakorn P, Phosri C, Robinson-Boyer L, Limnonthakul P, Doonan JH, Suwannasai N. The synergistic impact of a novel plant growth-promoting rhizobacterial consortium and Ascophyllum nodosum seaweed extract on rhizosphere microbiome dynamics and growth enhancement in Oryza sativa L. RD79. Agronomy. 2024;14(11):2698. https://doi.org/10.3390/agronomy14112698
  58. 58. Thenappan DP, Pandey R, Hada A, Jaiswal DK, Chinnusamy V, Bhattacharya R, et al. Physiological basis of plant growth promotion in rice by rhizosphere and endosphere associated Streptomyces isolates from India. Rice. 2024;17(1):60. https://doi.org/10.1186/s12284-024-00732-w
  59. 59. Velmurugan S, Ashajyothi M, Charishma K, Kumar S, Balamurugan A, Javed M, et al. Enhancing defense against rice blast disease: unveiling the role of leaf endophytic firmicutes in antifungal antibiosis and induced systemic resistance. Microb Pathog. 2023;184:106326. https://doi.org/10.1016/j.micpath.2023.106326
  60. 60. Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, et al. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep. 2020;10(1):4818. https://doi.org/10.1038/s41598-020-61140-w
  61. 61. Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun. 2022;13(1):5913. https://doi.org/10.1038/s41467-022-33238-4
  62. 62. Zeb H, Hussain A, Naveed M, Ditta A, Ahmad S, Jamshaid MU, et al. Compost enriched with ZnO and Zn-solubilising bacteria improves yield and Zn-fortification in flooded rice. Ital J Agron. 2018;13(4):310-6. https://doi.org/10.4081/ija.2018.1295
  63. 63. Camargo AP, de Souza RSC, Jose J, Gerhardt IR, Dante RA, Mukherjee S, et al. Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot. ISME J. 2023;17(3):354-70. https://doi.org/10.1038/s41396-022-01345-1
  64. 64. Escudero-Martinez C, Coulter M, Alegria Terrazas R, Foito A, Kapadia R, Pietrangelo L, et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat Commun. 2022;13(1):3443. https://doi.org/10.1038/s41467-022-31022-y
  65. 65. Cernava T. Coming of age for microbiome gene breeding in plants. Nat Commun. 2024;15(1):6623. https://doi.org/10.1038/s41467-024-50700-7
  66. 66. Zhang X, Ma YN, Wang X, Liao K, He S, Zhao X, et al. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome. 2022;10(1):216. https://doi.org/10.1186/s40168-022-01422-9
  67. 67. Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science. 2021;371(6525):eabd0695. https://doi.org/10.1126/science.abd0695
  68. 68. Chang J, Costa OYA, Sun Y, Wang J, Tian L, Shi S, et al. Domesticated rice alters the rhizosphere microbiome, reducing nitrogen fixation and increasing nitrous oxide emissions. Nat Commun. 2025;16(1):2038. https://doi.org/10.1038/s41467-025-57213-x
  69. 69. Boyle JA, Frederickson ME, Stinchcombe JR. Genetic architecture of heritable leaf microbes. Microbiol Spectr. 2024;12(7):e00610-24. https://doi.org/10.1128/spectrum.00610-24
  70. 70. Pérez-Enciso M, Zingaretti LM, Ramayo-Caldas Y, de los Campos G. Opportunities and limits of combining microbiome and genome data for complex trait prediction. Genet Sel Evol. 2021;53(1):65. https://doi.org/10.1186/s12711-021-00658-7
  71. 71. Kim H, Lee KK, Jeon J, Harris WA, Lee YH. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome. 2020;8(1):20. https://doi.org/10.1186/s40168-020-00805-0
  72. 72. Nguyen VH, Morantte RIZ, Lopena V, Verdeprado H, Murori R, Ndayiragije A, et al. Multi-environment genomic selection in rice elite breeding lines. Rice. 2023;16(1):7. https://doi.org/10.1186/s12284-023-00623-6
  73. 73. Sanjenbam P, Buddidathi R, Venkatesan R, Shivaprasad PV, Agashe D. Phenotypic diversity of Methylobacterium associated with rice landraces in North-East India. PLoS One. 2020;15(2):e0228550. https://doi.org/10.1371/journal.pone.0228550
  74. 74. Muller E, Shiryan I, Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun. 2024;15(1):2621. https://doi.org/10.1038/s41467-024-46888-3
  75. 75. Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, et al. Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes (Basel). 2023;14(7):1484. https://doi.org/10.3390/genes14071484
  76. 76. Jyoti S Das, Singh G, Pradhan AK, Tarpley L, Septiningsih EM, Talukder SK. Rice breeding for low input agriculture. Front Plant Sci. 2024;15:1408356. https://doi.org/10.3389/fpls.2024.1408356
  77. 77. Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37(6):676-84. https://doi.org/10.1038/s41587-019-0104-4
  78. 78. Blonde C, Caddeo A, Nasser W, Reverchon S, Peyraud R, Haichar F, el Z. New insights in metabolism modelling to decipher plant-microbe interactions. New Phytol. 2025;246(4):1485-93. https://doi.org/10.1111/nph.70063
  79. 79. Schmidt CM, Ghadermazi P, Chan SHJ. Predicting microbiome metabolism and interactions through integrating multidisciplinary principles. mSystems. 2021;6(5):e00768-21. https://doi.org/10.1128/msystems.00768-21
  80. 80. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911-20. https://doi.org/10.1073/pnas.1414592112
  81. 81. Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol. 2022;15(1):209-25. https://doi.org/10.1080/19420889.2022.2082736
  82. 82. Howe A, Stopnisek N, Dooley SK, Yang F, Grady KL, Shade A. Seasonal activities of the phyllosphere microbiome of perennial crops. Nat Commun. 2023;14(1):1039. https://doi.org/10.1038/s41467-023-36515-y
  83. 83. Meng W, Zhou Z, Tan M, Liu A, Liu S, Wang J, et al. Integrated analysis of metatranscriptome and amplicon sequencing to reveal distinctive rhizospheric microorganisms of salt-tolerant rice. Plants (Basel). 2024;14(1):36. https://doi.org/10.3390/plants14010036
  84. 84. Nwachukwu BC, Babalola OO. Metagenomics: a tool for exploring key microbiome with the potentials for improving sustainable agriculture. Front Sustain Food Syst. 2022;6:886987. https://doi.org/10.3389/fsufs.2022.886987
  85. 85. Quan G, Xia P, Lian S, Wu Y, Zhu G. Zinc uptake system ZnuACB is essential for maintaining pathogenic phenotype of F4ac(+) enterotoxigenic E. coli (ETEC) under a zinc restricted environment. Vet Res. 2020;51(1):127. https://doi.org/10.1186/s13567-020-00854-1
  86. 86. Thingujam D, Liu J, Majeed A, Mukhtar MS. Plant-microbiome dynamics through spatial metatranscriptomics and network biology. Trends Plant Sci. 2024;29(11):1176-80. https://doi.org/10.1016/j.tplants.2024.07.007
  87. 87. Li G, Wang K, Qin Q, Li Q, Mo F, Nangia V, et al. Integrated microbiome and metabolomic analysis reveal responses of rhizosphere bacterial communities and root exudate composition to drought and genotype in rice (Oryza sativa L.). Rice. 2023;16(1):19. https://doi.org/10.1186/s12284-023-00636-1
  88. 88. Soman R, Kavitha MH, Shaji H. Chapter 44 - Metagenomics: a genomic tool for monitoring microbial communities during bioremediation. In: Malik JA, editor. Microbes and microbial biotechnology for green remediation. Elsevier; 2022. p. 813-21 https://doi.org/10.1016/B978-0-323-90452-0.00006-2
  89. 89. Cai Z, Yu T, Tan W, Zhou Q, Liu L, Nian H, et al. GmAMT2.1/2.2-dependent ammonium nitrogen and metabolites shape rhizosphere microbiome assembly to mitigate cadmium toxicity. NPJ Biofilms Microbiomes. 2024;10(1):60. https://doi.org/10.1038/s41522-024-00532-6
  90. 90. Mueller UG, Linksvayer TA. Microbiome breeding: conceptual and practical issues. Trends Microbiol. 2022;30(10):997-1011. https://doi.org/10.1016/j.tim.2022.04.003
  91. 91. Wang M, Eyre AW, Thon MR, Oh Y, Dean RA. Dynamic changes in the microbiome of rice during shoot and root growth derived from seeds. Front Microbiol. 2020;11:559728. https://doi.org/10.3389/fmicb.2020.559728
  92. 92. Bruijning M, Ayroles JF, Henry LP, Koskella B, Meyer KM, Metcalf CJE. Relative abundance data can misrepresent heritability of the microbiome. Microbiome. 2023;11(1):222. https://doi.org/10.1186/s40168-023-01669-w
  93. 93. Gonçalves OS, Creevey CJ, Santana MF. Designing a synthetic microbial community through genome metabolic modeling to enhance plant-microbe interaction. Environ Microbiome. 2023;18(1):81. https://doi.org/10.1186/s40793-023-00536-3
  94. 94. Marco S, Loredana M, Riccardo V, Raffaella B, Walter C, Luca N. Microbe-assisted crop improvement: a sustainable weapon to restore holobiont functionality and resilience. Hortic Res. 2022;9:uhac160. https://doi.org/10.1093/hr/uhac160
  95. 95. Brachi B, Filiault D, Whitehurst H, Darme P, Le Gars P, Le Mentec M, et al. Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proc Natl Acad Sci U S A. 2022;119(30):e2201285119. https://doi.org/10.1073/pnas.2201285119
  96. 96. Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, Pronk L, et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat Commun. 2022;13(1):3228. https://doi.org/10.1038/s41467-022-30849-9
  97. 97. He X, Wang D, Jiang Y, Li M, Delgado-Baquerizo M, McLaughlin C, et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat Plants. 2024;10(4):598-617. https://doi.org/10.1038/s41477-024-01654-7
  98. 98. He X, Zhang Q, Li B, Jin Y, Jiang L, Wu R. Network mapping of root-microbe interactions in Arabidopsis thaliana. NPJ Biofilms Microbiomes. 2021;7(1):72. https://doi.org/10.1038/s41522-021-00241-4
  99. 99. Chen L, Bao H, Yang J, Huo Y, Zhang J, Fang R, et al. Dynamics of rice seed-borne bacteria from acquisition to seedling colonization. Microbiome. 2024;12(1):253. https://doi.org/10.1186/s40168-024-01978-8

Downloads

Download data is not yet available.