Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Flower-based essential oils and encapsulation: a synergistic approach for bioavailability improvement

DOI
https://doi.org/10.14719/pst.10263
Submitted
25 June 2025
Published
27-10-2025

Abstract

Essential oils (EOs) are intricate blends of volatile and semi-volatile organic compounds sourced from various plant tissues like flowers, buds, leaves and bark. However, their clinical utility is significantly constrained by inherent physicochemical properties that limit bioavailability-including high volatility, poor water solubility and susceptibility to degradation. Encapsulation has emerged as an effective approach to overcome these challenges by entrapping the essential oil within polymeric nanocarriers, which acts as a shield, preserving their integrity. Techniques like spray drying, freeze drying, molecular inclusion and coating have been investigated for the encapsulation of these flower crop essential oils, with significant outcomes. Key findings reveal that cyclodextrin inclusion complexes increased the half-life of rose oil terpenoids by 300 %, while chitosan-based nano emulsions enhanced antimicrobial efficacy of jasmine oil by 5-fold. Additionally, liposomal encapsulation of lavender oil demonstrated a 70 % improvement in dermal penetration compared to non-encapsulated forms.  This review provides key insights on using encapsulation for unlocking the full potential of flower crop-based essential oils. With optimization of techniques and careful material selection, encapsulation can successfully enhance bioavailability, stability and efficacy.

References

  1. 1. Chakravarty I, Parmar VM, Mandavgane SA. Current trends in essential oil (EO) production. Biomass Conversion and Biorefinery. 2023;13(17):15311-34. https://doi.org/10.1007/s13399-021-01963-3
  2. 2. Shaaban HA, El-Ghorab AH, Shibamoto T. Bioactivity of essential oils and their volatile aroma components. Journal of Essential Oil Research. 2012;24(2):203-12. https://doi.org/10.1080/10412905.2012.659528
  3. 3. Adorjan B, Buchbauer G. Biological properties of essential oils: an updated review. Flavour and Fragrance Journal. 2010;25(6):407-26. https://doi.org/10.1002/ffj.2024
  4. 4. Nedović V, Kalušević A, Manojlović V, Lević S, Bugarski B, editors. An overview of encapsulation technologies for food applications. In: 11th International Congress on Engineering and Food (ICEF11); 2011. Amsterdam: Elsevier; 2011. p. 1801–7.
  5. 5. Zuidam NJ, Shimoni E. Overview of microencapsulates for use in food products or processes n band methods to make them. In: Encapsulation technologies for active food ingredients and food processing. New York: Springer; 2010:3-29. https://doi.org/10.1007/ 978-1-4419-1008-0_2
  6. 6. Barbosa-Cánovas GV, Ortega-Rivas E, Juliano P, Yan H. Food powders: physical properties, processing and functionality. New York: Kluwer Academic/Plenum Publishers; 2005.
  7. 7. Mukurumbira A, Shellie R, Keast R, Palombo E, Jadhav S. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control. 2022;136:108883. https://doi.org/10.1016/j.foodcont.2022.108883
  8. 8. Raza ZA, Khalil S, Ayub A, Banat IM. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research. 2020;492:108004. https://doi.org/10.1016/j.carres.2020.108004
  9. 9. Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing and recent developments in encapsulating essential oils. Chinese Journal of Chemical Engineering. 2021;30:255-71. https://doi.org/10.1016/j.cjche.2020.12.010
  10. 10. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. 2014;2014:651593. https://doi.org/10.1155/2014/651593
  11. 11. Sharma A, Gumber K, Gohain A, Bhatia T, Sohal HS, Mutreja V, et al. Importance of essential oils and current trends in use of essential oils (aroma therapy, agrofood and medicinal usage). In: Malik S, editor. Essential oils. Amsterdam: Elsevier; 2023. p. 53–83. https://doi.org/10.1016/B978-0-323-91740-7.00002-5
  12. 12. Padalia RC, Verma RS, Chauhan A, Chanotiya CS, Thul S. Phytochemical diversity in essential oil of Vitex negundo L. populations from India. Records of Natural Products. 2016;10(4):452-64.
  13. 13. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of oils: A comprehensive review of benefits, techniques and applications. Comprehensive reviews in food science and food safety. 2016;15(1):143-82. https://doi.org/10.1111/1541-4337.12179
  14. 14. Delshadi R, Bahrami A, Tafti AG, Barba FJ, Williams LL. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology. 2020;104:72-83. https://doi.org/10.1016/j.tifs.2020.07.004
  15. 15. Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines. 2016;3(4):25. https://doi.org/10.3390/medicines3040025
  16. 16. Herman RA, Ayepa E, Shittu S, Fometu SS, Wang J. Essential oils and their applications-a mini review. Adv Nutr Food Sci. 2019;4(4):1-13.
  17. 17. Yeshi K, Wangchuk P. Essential oils and their bioactive molecules in healthcare. Herbal biomolecules in healthcare applications. Amsterdam: Elsevier; 2022. p. 215-37. https://doi.org/10.1016/B978-0-323-85852-6.00006-8
  18. 18. Ahadi H, Shokrpour M, Fatahi R, Naghavi MR, Mirjalili MH. Essential oil, flavonoids and anthocyanins profiling of some Iranian damask rose (Rosa damascena Mill.) genotypes. Industrial Crops and Products. 2023;205:117579. https://doi.org/10.1016/j.indcrop.2023.117579
  19. 19. Makeri M, Salihu A. Jasmine essential oil: Production, extraction, characterization and applications. Essential Oils: Elsevier; 2023. p. 147-77. https://doi.org/10.1016/B978-0-323-91740-7.00013-X
  20. 20. Barut M, Tansı LS, Karaman S. Essential oil composition of Lavender (Lavandula angustifolia Mill.) at various plantation ages and growth stages in the mediterranean region. Turkish Journal of Agriculture-Food Science and Technology. 2022;10(4):746-53. https://doi.org/10.24925/turjaf.v10i4.746-753.5051
  21. 21. Tadrent W, Kabouche A, Touzani R, Kabouche Z. Chemotypes investigation of essential oils of Chamomile herbs: A short review. J Mater Environ Sci. 2016;7(4):1229-35.
  22. 22. Multisona RR, Shirodkar S, Arnold M, Gramza-Michalowska A. Clitoria ternatea flower and its bioactive compounds: Potential use as microencapsulated ingredient for functional foods. Applied Sciences. 2023;13(4):2134. https://doi.org/10.3390/app13042134
  23. 23. Mrani SA, Zejli H, Azzouni D, Fadili D, Alanazi MM, Hassane SO, et al. Chemical composition, antioxidant, antibacterial and hemolytic properties of Ylang-Ylang (Cananga odorata) essential oil: potential therapeutic applications in dermatology. Pharmaceuticals. 2024;17(10):1376. https://doi.org/10.3390/ph17101376
  24. 24. Acimovic MG, Loncar BL, Jeliazkov VD, Pezo LL, Ljujic JP, Miljkovic AR, et al. Comparison of volatile compounds from clary sage (Salvia sclarea L.) verticillasters essential oil and hydrolate. Journal of Essential Oil Bearing Plants. 2022;25(3):555-70. https://doi.org/10.1080/0972060X.2022.2105662
  25. 25. Zeremski T, Šovljanski O, Vukić V, Lončar B, Rat M, Perković Vukčević N, et al. Combination of Chromatographic Analysis and Chemometric Methods with Bioactivity Evaluation of the Antibacterial Properties of Helichrysum italicum Essential Oil. Antibiotics. 2024;13(6):499. https://doi.org/10.3390/antibiotics13060499
  26. 26. Farag MA, Al-Mahdy DA. Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Natural Product Research. 2013;27(12):1091-7. https://doi.org/10.1080/14786419.2012.696256
  27. 27. El-Shiekh RA, Ali DE, Mandour AA, Meselhy MR. Essential oils of Plumeria alba L. and Plumeria rubra L. growing in Egypt: GC/MS analysis, molecular dynamics and in vitro anti-cholinesterase activity. Industrial Crops and Products. 2024;221:119316. https://doi.org/10.1016/j.indcrop.2024.119316
  28. 28. Reineccius G. Use of proteins for the delivery of flavours and other bioactive compounds. Food hydrocolloids. 2019;86:62-9. https://doi.org/10.1016/j.foodhyd.2018.01.039
  29. 29. Majeed H, Bian Y-Y, Ali B, Jamil A, Majeed U, Khan QF, et al. Essential oil encapsulations: Uses, procedures and trends. Rsc Advances. 2015;5(72):58449-63.
  30. 30. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. Journal of Nanoscience and Nanotechnology. 2013;13(1):114-22. https://doi.org/10.1166/jnn.2013.6701
  31. 31. Do Nascimento TG, Da Silva PF, Azevedo LF, Da Rocha LG, de Moraes Porto ICC, Lima e Moura TFA, et al. Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and leishmanicidal activity. Nanoscale Research Letters. 2016;11:1-16. https://doi.org/10.1186/s11671-016-1517-3
  32. 32. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics. 2010;385(1-2):113-42. https://doi.org/10.1016/j.ijpharm.2009.10.018
  33. 33. Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology. 2018;78:34-60. https://doi.org/10.1016/j.tifs.2018.05.018
  34. 34. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology. 2016;53:34-48. https://doi.org/10.1016/j.tifs.2016.05.002
  35. 35. Shapiro YE. Nanoencapsulation of bioactive substances. New York: Marcel Dekker; 2004. p. 2339. https://doi.org/10.1201/9781439834398.ch202
  36. 36. Assadpour E, Jafari SM. Nanoencapsulation: techniques and developments for food applications. In: Jafari SM, editor. Nanomaterials for Food Applications. Amsterdam: Elsevier; 2019. p. 35–61. https://doi.org/10.1016/B978-0-12-814130-4.00003-8
  37. 37. Maurya A, Prasad J, Das S, Dwivedy AK. Essential oils and their application in food safety. Frontiers in Sustainable Food Systems. 2021;5:653420. https://doi.org/10.3389/fsufs.2021.653420
  38. 38. Alam MS, Akhtar A, Ahmad J, Nollet LM. Stability Perspectives of Nanoemulsions. Nanoemulsions in Food Technology: CRC Press; 2021. p. 89-110.
  39. 39. Desobry SA, Netto FM, Labuza TP. Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of Food Science. 1997;62(6):1158-62. https://doi.org/10.1111/j.1365-2621.1997.tb12235.x
  40. 40. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International. 2007;40(9):1107-21. https://doi.org/10.1016/j.foodres.2007.07.004
  41. 41. Laohasongkram K, Mahamaktudsanee T, Chaiwanichsiri S. Microencapsulation of Macadamia oil by spray drying. Procedia Food Science. 2011;1:1660-5. https://doi.org/10.1016/j.profoo.2011.09.245
  42. 42. Frascareli E, Silva V, Tonon R, Hubinger M. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing. 2012;90(3):413-24. https://doi.org/10.1016/j.fbp.2011.12.002
  43. 43. Santos D, Maurício AC, Sencadas V, Santos JD, Fernandes MH, Gomes PS. Spray drying: an overview. Biomaterials-Physics and Chemistry-New Edition. 2018:9-35. https://doi.org/10.5772/intechopen.72247
  44. 44. Fang Z, Bhandari B. Spray drying of bioactives. Engineering Foods for Bioactives Stability and Delivery. 2017:261-84. https://doi.org/10.1007/978-1-4939-6595-3_10
  45. 45. Ciurzynska A, Lenart A. Freeze-drying-application in food processing and biotechnology-a review. Polish Journal of Food and Nutrition Sciences. 2011;61(3). https://doi.org/10.2478/v10222-011-0017-5
  46. 46. Bhatia M. A review on application of encapsulation in agricultural processes. Encapsulation of Active Molecules and Their Delivery System. 2020:131-40. https://doi.org/10.1016/B978-0-12-819363-1.00008-9
  47. 47. Nwankwo CS, Okpomor EO, Dibagar N, Wodecki M, Zwierz W, Figiel A. Recent developments in the hybridization of the freeze-drying technique in food dehydration: A review on chemical and sensory qualities. Foods. 2023;12(18):3437. https://doi.org/10.3390/foods12183437
  48. 48. Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate polymers. 2020;242:116388. https://doi.org/10.1016/j.carbpol.2020.116388
  49. 49. Lohith Kumar D, Sarkar P. Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters. 2018;16:59-70. https://doi.org/10.1007/s10311-017-0663-x
  50. 50. McClements DJ, Jafari SM. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science. 2018;251:55-79. https://doi.org/10.1016/j.cis.2017.12.001
  51. 51. Khan BA, Akhtar N, Khan HMS, Waseem K, Mahmood T, Rasul A, et al. Basics of pharmaceutical emulsions: A review. African journal of pharmacy and pharmacology. 2011;5(25):2715-25. https://doi.org/10.5897/AJPP11.698
  52. 52. Hof F, Craig SL, Nuckolls C, Rebek J, Julius. Molecular encapsulation. Angewandte Chemie International Edition. 2002;41(9):1488-508. https://doi.org/10.1002/1521-3773(20020503)41:9%3C1488::AID-ANIE1488%3E3.0.CO;2-G
  53. 53. Qu D, Tang GP, Chu PK. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res. 2014;47(7):2017–25. https://doi.org/10.1021/ar500055s
  54. 54. Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal. 2010;25(5):313-26. https://doi.org/10.1002/ffj.2019
  55. 55. Perinelli DR, Palmieri GF, Cespi M, Bonacucina G. Encapsulation of flavours and fragrances into polymeric capsules and cyclodextrins inclusion complexes: An update. Molecules. 2020;25(24):5878. https://doi.org/10.3390/molecules25245878
  56. 56. Landy D, Mallard I, Ponchel A, Monflier E, Fourmentin S. Remediation technologies using cyclodextrins: an overview. Environmental Chemistry Letters. 2012;10:225-37. https://doi.org/10.1007/s10311-011-0351-1
  57. 57. Choudhury N, Meghwal M, Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers. 2021;2(4):426-42. https://doi.org/10.1002/fft2.94
  58. 58. El-Kader A, Abu Hashish H. Encapsulation techniques of food bioproduct. Egyptian Journal of Chemistry. 2020;63(5):1881-909.
  59. 59. Hosseini H, Tajiani Z, Jafari SM. Improving the shelf-life of food products by nano/micro-encapsulated ingredients. In: Jafari SM, editor. Food quality and shelf life. Amsterdam: Elsevier; 2019. p. 159–200. https://doi.org/10.1016/B978-0-12-817190-5.00005-7
  60. 60. Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids and Surfaces B: Biointerfaces. 2022:112676. https://doi.org/10.1016/j.colsurfb.2022.112676
  61. 61. Ejiohuo O, Folami S, Maigoro AY. Calendula in modern medicine: Advancements in wound healing and drug delivery applications. European Journal of Medicinal Chemistry Reports. 2024:100199. https://doi.org/10.1016/j.ejmcr.2024.100199
  62. 62. Vermoesen E, Bodé S, Brosens G, Boeckx P, Van Vlierberghe S. Chemical strategies towards controlled release in agriculture. Reviews in Chemical Engineering. 2024;40(2):247-77. https://doi.org/10.1016/j.colsurfb.2022.112676
  63. 63. Sousa VI, Parente JF, Marques JF, Forte MA, Tavares CJ. Microencapsulation of essential oils: A review. Polymers. 2022;14(9):1730. https://doi.org/10.3390/polym14091730
  64. 64. Semalty A, Semalty M, Singh D, Rawat M. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2010;67(3-4):253-60. https://doi.org/10.1007/s10847-009-9705-8
  65. 65. Kashyap N, Kumari A, Raina N, Zakir F, Gupta M. Prospects of essential oil loaded nanosystems for skincare. Phytomedicine Plus. 2022;2(1):100198. https://doi.org/10.1016/j.phyplu.2021.100198
  66. 66. Napiórkowska A, Kurek M. Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review. Molecules. 2022;27(16):5142. https://doi.org/10.3390/molecules27165142
  67. 67. Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Advances in Colloid and Interface Science. 2024:103229. https://doi.org/10.1016/j.cis.2024.103229
  68. 68. El-Tokhy FS, Abdel-Mottaleb MM, Abdel Mageed SS, Mahmoud AM, El-Ghany EA, Geneidi AS. Boosting the in vivo transdermal bioavailability of asenapine maleate using novel lavender oil-based lipid nanocapsules for management of schizophrenia. Pharmaceutics. 2023;15(2):490. https://doi.org/10.3390/pharmaceutics15020490
  69. 69. Laina KT, Drosou C, Krokida M. Comparative assessment of encapsulated essential oils through the innovative electrohydrodynamic processing and the conventional spray drying and freeze-drying techniques. Innovative Food Science & Emerging Technologies. 2024;95:103720. https://doi.org/10.1016/j.ifset.2024.103720
  70. 70. Bernard F Gibbs, Selim Kermasha, Inteaz Alli, Catherine N. Mulligan. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition. 1999;50(3):213-24. https://doi.org/10.1080/096374899101256
  71. 71. Jafari SM, Assadpoor E, Bhandari B, He Y. Nano-particle encapsulation of fish oil by spray drying. Food Research International. 2008;41(2):172-83. https://doi.org/10.1016/j.foodres.2007.11.002
  72. 72. Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology. 2012;23(1):13-27. https://doi.org/10.1016/j.tifs.2011.08.003
  73. 73. D’Souza AA, Shegokar R. Potential of oils in development of nanostructured lipid carriers. In: Shafi PM, editor. Essential oils and Nanotechnology for Treatment of Microbial Diseases. Boca Raton: CRC Press; 2017. p. 242–57.
  74. 74. Carneiro HC, Tonon RV, Grosso CR, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering. 2013;115(4):443-51. https://doi.org/10.1016/j.jfoodeng.2012.03.033
  75. 75. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants. 2008;25(3):241-58. https://doi.org/10.1080/02652030701744538
  76. 76. Chaib S, Benali N, Arhab R, Sadraoui Ajmi I, Bendaoued H, Romdhane M. Preparation of Thymus vulgaris essential oil microcapsules by complex coacervation and direct emulsion: Synthesis, characterization and controlled release properties. Arabian Journal for Science and Engineering. 2021;46:5429-46. https://doi.org/10.1007/s13369-020-05223-w
  77. 77. McClements DJ, Li Y. Review of in vitro digestion models for rapid screening of emulsion-based systems. Food & Function. 2010;1(1):32-59. https://doi.org/10.1039/c0fo00111b
  78. 78. Ravichandran R. Pharmacokinetic study of nanoparticulate curcumin: oral formulation for enhanced bioavailability. 2013. https://doi.org/10.4236/jbnb.2013.43037
  79. 79. Nazzaro F, Orlando P, Fratianni F, Coppola R. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology. 2012;23(2):182-6. https://doi.org/10.1016/j.copbio.2011.10.001
  80. 80. Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in designing essential oil nanoformulations: An integrative approach to mathematical modeling with potential application in food preservation. Foods. 2023;12(21):4017. https://doi.org/10.3390/foods12214017
  81. 81. Manzoor A, Asif M, Khalid SH, Ullah Khan I, Asghar S. Nanosizing of lavender, basil and clove essential oils into microemulsions for enhanced antioxidant potential and antibacterial and antibiofilm activities. ACS omega. 2023;8(43):40600-12. https://doi.org/10.1021/acsomega.3c05394
  82. 82. Berraaouan D, Essifi K, Addi M, Hano C, Fauconnier ML, Tahani A. Hybrid microcapsules for encapsulation and controlled release of rosemary essential oil. Polymers. 2023;15(4):823. https://doi.org/10.3390/polym15040823
  83. 83. Zhao Y, Wang Y, Zhang Z, Li H. Advances in controllable release essential oil microcapsules and their promising applications. Molecules. 2023;28(13):4979. https://doi.org/10.3390/molecules28134979
  84. 84. Yasin H, Al-Taani B, Salem MS. Preparation and characterization of ethylcellulose microspheres for sustained-release of pregabalin. Research in Pharmaceutical Sciences. 2021;16(1):1-5. https://doi.org/10.4103/1735-5362.305184
  85. 85. Medici S, Peana M, Pelucelli A, Zoroddu MA, editors. An updated overview on metal nanoparticles toxicity. In: Seminars in Cancer Biology. Amsterdam: Elsevier; 2021. https://doi.org/10.1016/j.semcancer.2021.06.020

Downloads

Download data is not yet available.