Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Carbon farming: A pathway to mitigate climate change for sustainable agriculture

DOI
https://doi.org/10.14719/pst.10265
Submitted
25 June 2025
Published
17-11-2025

Abstract

In the twenty-first century, climate change results in a combination of natural and human impacts, including extreme weather and variability. Carbon farming has the opportunity to significantly reduce global warming while increasing resilience. Carbon farming is a holistic agricultural practice that seeks to minimize climate change and enhance ecologically sound sustainable farming. Enhancing soil and vegetation’s potential to capture atmospheric carbon dioxide (CO2) may assist in mitigating greenhouse gas emissions while also enhancing soil health and agricultural productivity. This review explores the key carbon farming practices such as conservation agriculture (CA), agroforestry, cover cropping, intercropping, tillage practices and mulching and their role in promoting soil organic carbon and reducing greenhouse gas (GHG) emissions. Global programs such as the Agricultural Carbon Project in Australia and Kenya, the Chicago Climate Exchange and the 4 of 1000 Initiative, indicate that carbon farming might boost food security while simultaneously addressing climate change. High-impact regions can enjoy economic gains amounting to as much as $63 billion from things like crop rotation and organic farming under the umbrella of emissions trading initiatives that encourage environmentally sound agricultural techniques. However, drawbacks include a lack of financial assistance, ineffective policies and restricted supply of water. Carbon farming may be efficiently promoted with strong government assistance, financial incentives and improved stakeholder awareness. Through increased adoption of carbon farming practices, agriculture becomes more resilient, sustainable and aligned with sustainable development goals (SDG).

References

  1. 1. Srinivasarao C, Gopinath KA, Prasad JVNS, Singh AK. Climate resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions and impacts. Adv Agron. 2016;140:101-214. https://doi.org/10.1016/bs.agron.2016.06.003
  2. 2. Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, Zhu YG, et al. Climate change exacerbates the environmental impacts of agriculture. Science. 2024;385(6713):eadn3747. https://doi.org/10.1126/science.adn3747
  3. 3. Vistarte L, Kubule A, Rozentale L, Pubule J. Carbon farming: a systematic literature review on sustainable practices. Rigas Tehniskas Universitates Zinatniskie Raksti (Scientific Proceedings of Riga Technical University). Environ Clim Technol. 2024;28(1):895–909. https://doi.org/10.2478/rtuect-2024-0068
  4. 4. Lin BB, Macfadyen S, Renwick AR, Cunningham SA, Schellhorn NA. Maximizing the environmental benefits of carbon farming through ecosystem service delivery. BioScience. 2013;63(10):793-803. https://doi.org/10.1525/bio.2013.63.10.6
  5. 5. Tang K, He C, Ma C, Wang D. Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China. Aust J Agric Resour Econ. 2019;63(3):575-92. https://doi.org/10.1111/1467-8489.12306
  6. 6. Adewale C, Higgins S, Granatstein D, Stockle CO, Carlson BR, Zaher UE, et al. Identifying hotspots in the carbon footprint of a small-scale organic vegetable farm. Agric Syst. 2016;149:112-21. https://doi.org/10.1016/j.agsy.2016.09.004
  7. 7. Rebolledo-Leiva R, Angulo-Meza L, Iriarte A, González-Araya MC. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production. Sci Total Environ. 2017;593:36-46. https://doi.org/10.1016/j.scitotenv.2017.03.147
  8. 8. Paustian K, Collier S, Baldock J, Burgess R, Creque J, DeLonge M, et al. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019;10:567-87. https://doi.org/10.1080/17583004.2019.1633231
  9. 9. Zawadzińska A, Salachna P, Nowak JS, Kowalczyk W, Piechocki R, Łopusiewicz Ł, et al. Compost based on pulp and paper mill sludge, fruit-vegetable waste, mushroom spent substrate and rye straw improves yield and nutritional value of tomato. Agronomy. 2021;12:13. https://doi.org/10.3390/agronomy12010013
  10. 10. Barão L, Alaoui A, Hessel R. Identifying and comparing easily accessible frameworks for assessing soil organic matter functioning. Agronomy. 2023;13(1):109. https://doi.org/10.3390/agronomy13010109
  11. 11. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, et al. Enhanced topsoil carbon stocks under organic farming. Proc Natl Acad Sci U S A. 2012;109:18226-31. https://doi.org/10.1073/pnas.1209429109
  12. 12. Leifeld J, Fuhrer J. Organic farming and soil carbon sequestration: What do we really know about the benefits? Ambio. 2010;39:585-99. https://doi.org/10.1007/s13280-010-0082-8
  13. 13. Sardiana IK. Organic vegetable farming system enhancing soil carbon sequestration in Bali, Indonesia. IOP Conf Ser Earth Environ Sci. 2021;724(1):012025. https://doi.org/10.1088/1755-1315/724/1/012025
  14. 14. Freibauer A, Rounsevell MD, Smith P, Verhagen J. Carbon sequestration in the agricultural soils of Europe. Geoderma. 2004;122(1):1-23. https://doi.org/10.1016/j.geoderma.2004.01.021
  15. 15. Sheikh MA, Kumar M, Bussman RW, Todaria NP. Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance Manag. 2011;6(1):15. https://doi.org/10.1186/1750-0680-6-15
  16. 16. Autret B, Beaudoin N, Rakotovololona L, Bertrand M, Grandeau G, Gréhan E, et al. Can alternative cropping systems mitigate nitrogen losses and improve GHG balance? Results from a 19-yr experiment in Northern France. Geoderma. 2019;342:20-33. https://doi.org/10.1016/j.geoderma.2019.01.039
  17. 17. Hansen S, Berland Frøseth R, Stenberg M, Stalenga J, Olesen JE, Krauss M, et al. Reviews and syntheses: Review of causes and sources of N₂O emissions and NO₃ leaching from organic arable crop rotations. Biogeosciences. 2019;16(14):2795-819. https://doi.org/10.5194/bg-16-2795-2019
  18. 18. Scialabba NEH, Müller-Lindenlauf M. Organic agriculture and climate change. Renew Agric Food Syst. 2010;25(2):158-69. https://doi.org/10.1017/S1742170510000116
  19. 19. Manna MC, Swarup A, Wanjari R, Mishra B, Shahi D. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res. 2007;94:397-409. https://doi.org/10.1016/j.still.2006.08.013
  20. 20. Begum K, Zornoza R, Farina R, Lemola R, Álvaro-Fuentes J, Cerasuolo M. Modeling soil carbon under diverse cropping systems and farming management in contrasting climatic regions in Europe. Front Environ Sci. 2022;10.819162 https://doi.org/10.3389/fenvs.2022.819162
  21. 21. Aguilera E, Guzmán GI, Alonso AM. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agron Sustain Dev. 2015;35(2):713-24. https://doi.org/10.1007/s13593-014-0267-9.
  22. 22. Sainju UM, Singh BP, Whitehead WF, Wang S. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization. J Environ Qual. 2006;35(4):1507-17. https://doi.org/10.2134/jeq2005.0189
  23. 23. Hooper R. How to Spend a Trillion Dollars: The 10 Global Problems We Can Actually Fix. Profile Books; 2021.
  24. 24. Tautges NE, Chiartas JL, Gaudin AC, O'Geen AT, Herrera I, Scow KM. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Glob Change Biol. 2019;25(11):3753-66. https://doi.org/10.1111/gcb.14762
  25. 25. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, et al. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: A review. Agron Sustain Dev. 2012;32:329-64. https://doi.org/10.1007/s13593-011-0056-7
  26. 26. Herrera R, Moreno B, Aguirrebengoa M, Winter S, Robles-Cruz AB, Ramos-Font ME, et al. Role of agricultural management in the provision of ecosystem services in warm climate vineyards: functional prediction of genes involved in nutrient cycling and carbon sequestration. Plants. 2023;12(3):527. https://doi.org/10.3390/plants12030527
  27. 27. Paul C, Bartkowski B, Dönmez C, Don A, Mayer S, Steffens M, et al. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? J Environ Manag. 2023;330:117142. https://doi.org/10.1016/j.jenvman.2022.117142.
  28. 28. Block JB, Danne M, Mußhoff O. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environ Manag. 2024;74(2):332-49. https://doi.org/10.1007/s00267-024-01963-9
  29. 29. Srinivasarao C, Lal R, Prasad JVNS, Gopinath KA, Singh R, Jakkula VS, et al. Potential and challenges of rainfed farming in India. Adv Agron. 2015;133:113-181. https://doi.org/10.1016/bs.agron.2015.05.004
  30. 30. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1-2):1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
  31. 31. Tripathi SC, Venkatesh K, Meena RP, Chander S, Singh GP. Sustainable intensification of maize and wheat cropping system through pulse intercropping. Sci Rep. 2021;11(1):18805. https://doi.org/10.1038/s41598-021-98369-0
  32. 32. Singh R, Babu S, Avasthe RK, Yadav GS, Das A, Mohapatra KP, et al. Crop productivity, soil health and energy dynamics of Indian Himalayan intensified organic maize-based systems. Int Soil Water Conserv Res. 2021;9(2):260-70. https://doi.org/10.1016/j.iswcr.2020.12.001
  33. 33. Girijesh GK, Basavaraj M, Sharanabasappa, Renukaswamy NS. Effect of legumes as intercrop in Maize (Zea mays L.) on soil fertility, Maize equivalent yield and nutrient recycling. Int J Pure App Biosci. 2017;5(5):693-9. https://doi.org/10.18782/2320-7051.2776
  34. 34. Anand A, Kumar V, Kaushal P. Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renew Sustain Energy Rev. 2022;156:111959. https://doi.org/10.1016/j.rser.2021.111959
  35. 35. Varjani S, Kumar G, Rene ER. Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manage. 2019;232:505-13. https://doi.org/10.1016/j.jenvman.2018.11.043
  36. 36. Luo L, Wang G, Shi G, Zhang M, Zhang J, He J, et al. The characterization of biochars derived from rice straw and swine manure and their potential and risk in N and P removal from water. J Environ Manage. 2019;245:1-7. https://doi.org/10.1016/j.jenvman.2019.05.072
  37. 37. Qian TT, Wu P, Qin QY, Huang YN, Wang YJ, Zhou DM. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). J Hazard Mater. 2019;362:311-7. https://doi.org/10.1016/j.jhazmat.2018.09.034
  38. 38. Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K. Physical and chemical characterization of waste wood derived biochars. Waste manage. 2015;36:256-68. https://doi.org/10.1016/j.wasman.2014.10.029
  39. 39. Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour technol. 2011;102(10):6273-8. https://doi.org/10.1016/j.biortech.2011.03.006
  40. 40. Duan XL, Yuan CG, Jing TT, Yuan XD. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. Fuel. 2019;239:830-40. https://doi.org/10.1016/j.fuel.2018.11.017
  41. 41. Ng WC, You S, Ling R, Gin KY, Dai Y, Wang CH. Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization and cost-benefit analysis. Energy. 2017;139:732-42. https://doi.org/10.1016/j.energy.2017.07.165
  42. 42. Gross A, Bromm T, Glaser B. Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy. 2021;11(12):2474. https://doi.org/10.3390/agronomy11122474
  43. 43. Ngui ME, Lin YH, Wei IL, Wang CC, Xu YZ, Lin YH. Effects of the combination of biochar and organic fertilizer on soil properties and agronomic attributes of soybean (Glycine max L.). Plos one, 2024;19(9):e0310221. https://doi.org/10.1371/journal.pone.0310221
  44. 44. Lehmann J, Rondon M. Bio-char soil management on highly weathered soils in the humid tropics. In: Uphoff N, editor. Biological Approaches to Sustainable Soil Systems. Boca Raton (FL): CRC Press; 2006. p. 517-530.
  45. 45. Liu Q, Liu B, Zhang Y, Hu T, Lin Z, Liu G, et al. Biochar application as a tool to decrease soil nitrogen losses (NH₃ volatilization, N₂O emissions and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biol. 2019;25(6):2077-93. https://doi.org/10.1111/gcb.14613
  46. 46. Tisserant A, Cherubini F. Potentials, limitations, co-benefits and trade-offs of biochar applications to soils for climate change mitigation. Land. 2019;8(12):179. https://doi.org/10.3390/land8120179
  47. 47. Zhou H, Zhang D, Wang P, Liu X, Cheng K, Li L, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A meta-analysis. Agric Ecosyst Environ. 2017;239:80-9. https://doi.org/10.1016/j.agee.2017.01.006
  48. 48. Chen J, Heiling M, Resch C, Mbaye M, Gruber R, Dercon G. Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agric Ecosyst Environ. 2018;265:123-31. https://doi.org/10.1016/j.agee.2018.06.005
  49. 49. Kahlon MS, Lal R, Ann-Varughese M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil Tillage Res. 2013;126:151-8. https://doi.org/10.1016/j.still.2012.08.001
  50. 50. Singh G, Gupta MK, Chaurasiya S, Sharma VS, Pimenov DY. Rice straw burning: A review on its global prevalence and the sustainable alternatives for its effective mitigation. Environ Sci Pollut Res. 2021;28(25):32125-55. https://doi.org/10.1007/s11356-021-14163-3
  51. 51. Mohammed NI, Kabbashi N, Alade A. Significance of agricultural residues in sustainable biofuel development. In: Agricultural Waste and Residues. 2018. p. 71-88.
  52. 52. Jordan A, Zawala LM, Gill J (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena. 2010;81(1):77–85. https://doi.org/10.1016/j.catena.2010.01.007
  53. 53. Zhao X, Liu S, Pu C, Zhang X, Xue J, Zhang R, et al. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob Chang Biol. 2016;22:1372-1384. DOI: 10.1111/gcb.13185
  54. 54. Kyriakarakos G. Carbon farming: Bridging technology development with policy goals. Sustainability. 2024;16(5):1903. https://doi.org/10.3390/su16051903.
  55. 55. Baker CJ, Saxton KE, editors. No-tillage seeding in conservation agriculture. Wallingford (UK): CABI; 2007.
  56. 56. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623-1627. https://doi.org/10.1126/science.1097396
  57. 57. Li C, Frolking S, Butterbach-Bahl K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Change. 2005;72(3):321-338. https://doi.org/10.1007/s10584-005-6791-5
  58. 58. Somasundaram J, Sinha NK, Dalal RC, Lal R, Mohanty M, Naorem AK, et al. No-till farming and conservation agriculture in South Asia–issues, challenges, prospects and benefits. Crit Rev Plant Sci. 2020;39(3):236-79.
  59. 59. Encyclopedia of Soils in the Environment. Amsterdam: Elsevier. 2005.
  60. 60. Central Statistical Bureau. Latvia’s energy balance in 2017 (Latvijas energobilance 2017. gadā). Riga (Latvia): CSP; 2018.
  61. 61. Buschmann AH, Chopin T, Neori A, Halling C, Troell M, Hernández-González MC, et al. Ecological engineering in aquaculture: Towards a better waste management in Western World mariculture. Encycl Ecol. 2008;2463-2475. https://doi.org/10.1016/B978-008045405-4.00065-3
  62. 62. Visscher AM, Meli P, Fonte SJ, Bonari G, Zerbe S, Wellstein C. Agroforestry enhances biological activity, diversity and soil-based ecosystem functions in mountain agroecosystems of Latin America: A meta-analysis. Glob Change Biol. 2023;30(1). https://doi.org/10.1111/gcb.17036
  63. 63. Herder Md, Moreno G, Mosquera-Losada MR, Palma J, Sidiropoulou A, Santiago-Freijanes, et al. Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ. 2017;241:121-132. https://doi.org/10.1016/j.agee.2017.03.005.
  64. 64. Forest Survey of India (IFSR). India State of Forest Report. Ministry of Environment, Forest and Climate Change, Government of India; 2023.
  65. 65. Gichuki L, Brouwer R, Davies J, Vidal A, Kuzee M, Magero C, et al. Reviving land and restoring landscapes: Policy convergence between forest landscape restoration and land degradation neutrality. Gland, Switzerland: IUCN; 2019. p. 34. https://doi.org/10.2305/IUCN.CH.2019.11.en
  66. 66. Singh NR, Kumar D, Rao KK, Bhatt BP. Agroforestry: Soil organic carbon and its carbon sequestration potential. In: Dagar JC, Tewari VP, editors. Climate change and agroforestry systems. Waretown (NJ): Apple Academic Press; 2020. p. 119–42.
  67. 67. Oelbermann M, Voroney RP, Thevathasan NV, Gordon AM, Kass DC, Schlönvoigt AM. Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agrofor Syst. 2006;68:27-36. https://doi.org/10.1007/s10457-005-5963-7
  68. 68. Dhillon GS, Van Rees KC. Soil organic carbon sequestration by shelterbelt agroforestry systems in Saskatchewan. Can J Soil Sci. 2017;97(3):394-409. https://doi.org/10.1139/cjss-2016-0094
  69. 69. Gupta N, Kukal SS, Bawa SS, Dhaliwal GS. Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. In: Nair PKR, Rao MR, Buck LE, editors. Advances in Agroforestry 2009. p. 27-35. Springer, Dordrecht. https://doi.org/10.1007/s10457-009-9219-9
  70. 70. Chauhan SK, Sharma SC, Chauhan R, Gupta R, Ritu. Accounting poplar and wheat productivity for carbon sequestration agri-silvicultural system. Indian For. 2010;136, 1174–82.
  71. 71. Jinger D, Kaushal R, Kumar R, Paramesh V, Verma A, Shukla M, et al. Degraded land rehabilitation through agroforestry in India: Achievements, current understanding and future prospectives. Front Ecol Evol. 2023;11:1088796. https://doi.org/10.3389/fevo.2023.1088796
  72. 72. Handa AK, Chavan SB, Kumar V, Vishnu R, Ramanan SS, Tewari RK, et al. Agroforestry for income enhancement, climate resilience and ecosystem services. Indian Council of Agricultural Research, New Delhi. 2020.
  73. 73. Sirohi C, Bnagrawa KS. Effect of different spacings of poplar-based agroforestry system on soil chemical properties and nutrient status in Haryana, India. Curr Sci. 2017;113, 1403–07. https://doi.org/10.18520/cs/v113/i07/1403-1407
  74. 74. Newaj R, Dhyani SK, Alam B, Prasad R, Rizvi RH, Ajit HA, et al. Role of agroforestry for mitigating climate change-some research initiative. NRC Agrofor Tech Bull. 2012;(5).
  75. 75. Chavan SB, Dhillon RS, Sirohi C, Keerthika A, Kumari S, Bharadwaj KK, et al. Enhancing farm income through boundary plantation of poplar (Populus deltoides): an economic analysis. Sustainability. 2022;14(14):8663. https://doi.org/10.3390/su14148663
  76. 76. Newaj R, Dar SA, Yadav RS, Ajit Shanker AK, Dhyani SK. Management effect on growth, biomass, carbon and nitrogen accumulation in Albizia procera at 4-years age in agroforestry system. J Trop For. 2008;23:73–80.
  77. 77. Handa AK, Dev I, Rizvi RH, Kumar N, Ram A, Kumar D, et al. Successful agroforestry models for different agro-ecological regions in India. Jhansi (India): Central Agroforestry Research Institute (CAFRI) and New Delhi (India): World Agroforestry Centre (ICRAF); 2019.
  78. 78. Kunhamu TK, Kumar BM, Jamaludheen V. Utility of multipurpose trees as black pepper (Piper nigrum L.) standards in the humid tropics of Kerala. Indian J Agrofor. 2012;14(1):17-22.
  79. 79. Jinger D, Kaushal R, Dinesh D, Singh G, Singh AK. “Sivlo-aromatic system for enhancing ecosystem services in Mahi ravines of Central Gujarat,” In: Proceedings of National Conference on landscape Management for Preventing Flood and Reservoir Sedimentation; 2022 September 22–24; Ranchi, Jharkhand, India. p. 39.
  80. 80. Joy J, Raj AK, Kunhamu TK, Jamaludheen V, Jayasree K. Fodder production and carbon stock of calliandra under coconut plantation. Range Manag Agrofor. 2019;40(1):109-17.
  81. 81. The Energy and Resources Institute (TERI). Status of crop residue management in India. 2019.
  82. 82. Srinivasarao C, Kundu S, Kumpawat BS, Kothari AK, Sodani SN, Sharma SK, et al. Soil organic carbon dynamics and crop yields of maize (Zea mays)-black gram (Vigna mungo) rotation-based long term manurial experimental system in semi-arid Vertisols of western India. Trop Ecol. 2019;60(3):433-46. https://doi.org/10.1007/s42965-019-00044-x
  83. 83. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BA, Schumacher J, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone: Carbon response functions as a model approach. Glob Change Biol. 2011;17(7):2415-27. https://doi.org/10.1111/j.1365-2486.2011.02408.x
  84. 84. Srinivasarao C, Jasti VN, Kondru VR, Bathineni VS, Mudigiri R, Venati GV, et al. Land and water conservation technologies for building carbon positive villages in India. Land Degrad Dev. 2022;33(3):395-412. https://doi.org/10.1002/ldr.4160
  85. 85. Ghaley B, Rusu T, Sandén T, Spiegel H, Menta C, Visioli G, et al. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability. 2018;10(3):794. https://doi.org/10.3390/su10030794
  86. 86. Chen X, Hu Y, Xia Y, Zheng S, Ma C, Rui Y, et al. Contrasting pathways of carbon sequestration in paddy and upland soils. Glob Change Biol. 2021;27(11):2478-90. https://doi.org/10.1111/gcb.15595
  87. 87. Eurelectric. Decarbonisation Pathways - Powering People. Brussels; 2018. https://www.eurelectric.org/decarbonisation-pathways/
  88. 88. Lecker B, Illi L, Lemmer A, Oechsner H. Biological hydrogen methanation: A review. Bioresour Technol. 2017;245:1220-8. https://doi.org/10.1016/j.biortech.2017.08.176
  89. 89. Gupta J, Kumari M, Mishra A, Swati, Akram IS, Thakur M. Agroforestry waste management: A review. Chemosphere. 2022;287:132321. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132321
  90. 90. Ledo A, Smith P, Zerihun A, Whitaker J, Vicente-Vicente JL, Qin Z, et al. Changes in soil organic carbon under perennial crops. Global Change Biol. 2020;26(7):4158-68. https://doi.org/10.1111/gcb.151
  91. 91. McCauley K, Barlow K. Regenerative agriculture: increasing plant diversity and soil carbon sequestration on agricultural landscapes. Surgery. 2023;15(1). https://doi.org/10.21083/surg.v15i1.7196
  92. 92. McSherry ME, Ritchie ME. Effects of grazing on grassland soil carbon: a global review. Glob Change Biol. 2013;19(5):1347-57. https://doi.org/10.1111/gcb.12144
  93. 93. Dhaliwal SS, Naresh RK, Mandal A, Singh R, Dhaliwal MK. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ Sustain Indic. 2019;1-2:100007. https://doi.org/10.1016/j.indic.2019.100007
  94. 94. Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang. 2016;6(5):452-461. https://doi.org/10.1038/nclimate2925
  95. 95. Singh SK, Pathak R, Pancholy A. Role of root nodule bacteria in improving soil fertility and growth attributes of leguminous plants under arid and semiarid environments. In: Hansen A, et al., editors. Rhizobium Biology and Biotechnology. 2017. p. 39-60.
  96. 96. Lu N, Tian H, Fu B, Yu H, Piao S, Chen S, et al. Biophysical and economic constraints on China's natural climate solutions. Nat Clim Change. 2022;12(9):847-53. https://doi.org/10.1038/s41558-022-01432-3
  97. 97. Jackson RB, Jobbaagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, et al. Trading water for carbon with biological carbon sequestration. Science. 2005;310:1944-7. https://doi.org/10.1126/science.1119282
  98. 98. Yadav M. Towards a healthier nation: Organic farming and government policies in India. Int J Adv Res Dev. 2017;2(5):153-9.
  99. 99. FAO. Climate Smart Agriculture: Policies, Practice and Financing for Food Security, Adaptation and Mitigation. Rome: Electronic Publishing Policy and Support Branch Communication Division. 2017.
  100. 100. Raut N, Sitaula BK, Bajracharya RM, Karki S. Methane emission from unsustainable crop production in Nepal: System of rice intensification as an option for mitigation. In: Prasad MNV, Pietrzykowski M, editors. Clim Change Soil Interact. Amsterdam: Elsevier; 2020. p. 37-49. https://doi.org/10.1016/B978-0-12-818032-7.00003-5
  101. 101. Singh S, Kiran BR, Mohan SV. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Environmental Science: Advances. 2024;3(4):522-42. https://doi.org/10.1039/D3VA00296A
  102. 102. Press Information Bureau (PIB). New Delhi: Press Information Bureau. https://pib.gov.in.
  103. 103. Macarthur E, Heading H. How the Circular Economy Tackles Climate Change. Cowes (UK): Ellen MacArthur Foundation; 2019;1:1-71.
  104. 104. Satterthwaite D. The contribution of cities to global warming and their potential contributions to solutions. Environ Urban Asia. 2010;1(1):1-12. https://doi.org/10.1177/097542530900100102
  105. 105. Katakojwala R, Advaitha K, Patil JK, Venkata Mohan S. Circular economy induced resilience in socio-ecological systems: An ecolonomic perspective. Mater Circ Econ. 2023;5(1):4. https://doi.org/10.1007/s42824-023-00074-w
  106. 106. Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, et al. Negative emissions-Part 1: Research landscape and synthesis. Environ Res Lett. 2018;13(6):063001. https://doi.org/10.1088/1748-9326/aabf9b
  107. 107. Velasco-Muñoz JF, Aznar-Sánchez JA, López-Felices B, Román-Sánchez IM. Circular economy in agriculture: An analysis of the state of research based on the life cycle. Sustainable Production and Consumption. 2022;34:257-70. https://doi.org/10.1016/j.spc.2022.09.017
  108. 108. Fiksel J, Sanjay P, Raman K. Steps toward a resilient circular economy in India. Clean Technol Environ Policy. 2021;23:203-18. https://doi.org/10.1007/s10098-020-01982-0
  109. 109. Honegger M, Reiner D. The political economy of negative emissions technologies: Consequences for international policy design. Clim Policy. 2018;18(3):306-321. https://doi.org/10.1080/14693062.2017.1413322
  110. 110. Xu L, Solangi YA, Wang R. Evaluating and prioritizing the carbon credit financing risks and strategies for sustainable carbon markets in China. J Clean Prod. 2023;137677. https://doi.org/10.1016/j.jclepro.2023.137677
  111. 111. Morizet-Davis J, Marting Vidaurre NA, Reinmuth E, Rezaei-Chiyaneh E, Schlecht V, Schmidt S, et al. Ecosystem services at the farm level—Overview, synergies, trade-offs and stakeholder analysis. Glob Chall. 2023;2200225. https://doi.org/10.1002/gch2.202200225
  112. 112. Otto J. Precarious participation: Assessing inequality and risk in the carbon credit commodity chain. Ann Assoc Am Geogr. 2019;109(1):187-201. https://doi.org/10.1080/24694452.2018.1490167.
  113. 113. Leifeld J. Carbon farming: Climate change mitigation via non-permanent carbon sinks. J Environ Manage. 2023;339:117893. https://doi.org/10.1016/j.jenvman.2023.117893
  114. 114. Nam CW. World Economic Outlook for 2022 and 2023. CESifo Forum. 2022;23(3):50-51.
  115. 115. Korav S, Rajanna GA, Yadav DB, Paramesha V, Mehta CM, Jha PK, et al. Impacts of mechanized crop residue management on rice-wheat cropping system-a review. Sustainability. 2022;14(23):15641. https://doi.org/10.3390/su142315641
  116. 116. CropIn. [Online]. Available: www.cropin.com.
  117. 117. Olam Group. [Online]. Available: www.olamgroup.com.
  118. 118. Nurture.farm. [Online]. Available: https://nurture.farm/endtheburn/.
  119. 119. Barbato CT, Strong AL. Farmer perspectives on carbon markets incentivizing agricultural soil carbon sequestration. NPJ Clim Action. 2023;2(1):26. https://doi.org/10.1038/s44168-023-00055-4
  120. 120. Lobsey C, Viscarra Rossel RS. Sensing of soil bulk density for more accurate carbon accounting. Eur J Soil Sci. 2016;67:504-513. https://doi.org/10.1111/ejss.12355
  121. 121. Angelopoulou T, Tziolas N, Balafoutis A, Zalidis G, Bochtis D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019;11:676. https://doi.org/10.3390/rs11060676
  122. 122. Heil J, Jorges C, Stumpe B. Evaluation of using digital photography as a cost-effective tool for the rapid assessment of soil organic carbon at a regional scale. Soil Secur. 2022;6:100023. https://doi.org/10.1016/j.soisec.2021.100023
  123. 123. Hoffmann M, Jurisch N, Garcia Alba J, Albiac Borraz E, Schmidt M, Huth V, et al. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: A comparison between automatic chamber-derived C budgets and repeated soil inventories. Biogeosciences. 2017;14:1003-1019. https://doi.org/10.5194/bg-14-1003-2017
  124. 124. Ayala Izurieta JE, Márquez CO, García VJ, Jara Santillán CA, Sisti JM, Pasqualotto N, et al. Multi-predictor mapping of soil organic carbon in the alpine tundra: A case study for the central Ecuadorian páramo. Carbon Balance Manag. 2021;16:32. https://doi.org/10.1186/s13021-021-00195-2
  125. 125. Benke KK, Norng S, Robinson NJ, Chia K, Rees DB, Hopley J. Development of pedotransfer functions by machine learning for prediction of soil electrical conductivity and organic carbon content. Geoderma. 2020;366:114210. https://doi.org/10.1016/j.geoderma.2020.114210
  126. 126. Shen Z, Ramirez-Lopez L, Behrens T, Cui L, Zhang M, Walden L, et al. Deep transfer learning of global spectra for local soil carbon monitoring. ISPRS J Photogramm Remote Sens. 2022;188:190-200. https://doi.org/10.1016/j.isprsjprs.2022.04.009
  127. 127. Leung DY, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426-443. https://doi.org/10.1016/j.rser.2014.07.093
  128. 128. Lal R. Soil health and carbon management. Food Energy Sec. 2016;5(4):212-222. https://doi.org/10.1002/fes3.96
  129. 129. Rawat US, Agarwal NK. Biodiversity: Concept, threats and conservation. Environ Conserv J. 2015;16(3):19-28. https://doi.org/10.36953/ECJ.2015.16303
  130. 130. Ribera LA, McCarl BA, Zenteno J. Carbon sequestration: A potential source of income for farmers. J Am Soc Farm Manag Rural Appraisers. 2009:70-77. https://doi.org/10.22004/ag.econ.189848
  131. 131. El Chami D, Daccache A, El Moujabber M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability. 2020;12(8):3119. https://doi.org/10.3390/su12083119
  132. 132. Funk JM, Field CB, Kerr S, Daigneault A. Modeling the impact of carbon farming on land use in a New Zealand landscape. Environ Sci Policy. 2014;37:1-10. https://doi.org/10.1016/j.envsci.2013.08.008
  133. 133. Conant RT, Ogle SM, Paul EA, Paustian K. Measuring and monitoring soil organic carbon stocks in agricultural lands for climate mitigation. Front Ecol Environ. 2011;9(3):169-173. https://doi.org/10.1890/090153
  134. 134. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, et al. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma. 2019;333:149-162. https://doi.org/10.1016/j.geoderma.2018.07.026
  135. 135. Schneider B, Ehrhart MG, Macey WH. Organizational climate and culture. Annu Rev Psychol. 2013;64:361-388. https://doi.org/10.1146/annurev-psych-113011-143809
  136. 136. Marks AB. (Carbon) farming our way out of climate change. Denv Law Rev. 2019;97:497.

Downloads

Download data is not yet available.