Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Agronomic and environmental dimensions of large-scale irrigation projects for sustainable agriculture

DOI
https://doi.org/10.14719/pst.10266
Submitted
25 June 2025
Published
20-11-2025

Abstract

Across the world, large-scale irrigation projects (LSIPs) have revolutionized agriculture by ensuring food security and effective water resource management. Climate change including an increase in extreme weather events and altered rainfall patterns, has become a major challenge for the sustainability of agriculture. Thus, this paper deals with the prospects and concerns that revolve around LSIPs and urges the development of climate-resilient strategies. Sustainable water management strategies, water pricing, participatory irrigation management, technological inclusions like AI-, remote sensing- and IoT-based irrigation ensure precise and efficient water use. Hydrological models such as hydrologic engineering center-hydrologic modeling system (HEC-HMS), soil and water assessment tool (SWAT) and others help in understanding water resource dynamics. Case studies on China’s Three Gorges Dam, Egypt’s Aswan High Dam, Australia’s Murrumbidgee irrigation area and the Colorado river basin projects in the USA and Mexico reflect towering engineering feats and remarkable socio-economic transformations. While these infrastructures have advanced flood control, irrigation and hydropower generation, they have also highlighted the need for balanced development approaches that prioritize environmental integrity and social well-being. Thus, drawing from past lessons, integrating various adaptive management, community engagement and modern technologies and hydrological models are essential factors for sustaining agricultural productivity, water security and rural development in this rapidly changing and growing world.

References

  1. 1. Wang J, Zhu Y, Sun T, Huang J, Zhang L, Guan B, et al. Forty years of irrigation development and reform in China. Aust J Agric Resour Econ. 2020;64(1):126-49. https://doi.org/10.1111/1467-8489.12334
  2. 2. Hatamkhani A, Moridi A. Optimal development of agricultural sectors in the basin based on economic efficiency and social equality. Water Resour Manag. 2021;35(3):917-32. https://doi.org/10.1007/s11269-020-02754-7
  3. 3. Maja MM, Ayano SF. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst Environ. 2021;5:271-83. https://doi.org/10.1007/s41748-021-00209-6
  4. 4. Karunathilake EMBM, Le AT, Heo S, Chung YS, Mansoor S. The path to smart farming: innovations and opportunities in precision agriculture. Agriculture. 2023;13(8):1593. https://doi.org/10.3390/agriculture13081593
  5. 5. Schultz B, De Wrachien D. Irrigation and drainage systems research and development in the 21st century. Irrig Drain. 2002;51(4):311-27. https://doi.org/10.1002/ird.67
  6. 6. DeJong DH. The sword of Damocles? The Gila River Indian Community Water Settlement Act of 2004 in historical perspective. Wicazo Sa Rev. 2007;22(2):57-92. https://doi.org/10.1353/wic.2007.0017
  7. 7. Brutsaert W. Hydrology. Cambridge: Cambridge University Press; 2023.
  8. 8. Samykannu V, Pazhanivelan S. Validation of PERSIANN precipitation product using TAWN rain gauge network over different agro-climatic zones in Tamil Nadu. Madras Agric J. 2021;108(7-9):321-6. https://doi.org/10.29321/MAJ.10.000513
  9. 9. Karishma CG, Kannan B, Nagarajan K, Panneerselvam S, Pazhanivelan S. Spatial and temporal estimation of actual evapotranspiration of Lower Bhavani Basin, Tamil Nadu using Surface Energy Balance Algorithm for Land Model. J Appl Nat Sci. 2022;14(2):566-74. https://doi.org/10.31018/jans.v14i2.3412
  10. 10. Venkadesh S, Pazhanivelan S. Microclimatic studies on cropped area using flux tower. Indian Farmer. 2021;8(4):310-5.
  11. 11. Vasumathi V, Kalpana R, Pazhanivelan S, Kumaraperumal R, Priya MV, Varshini PA. A review on wetlands–threats, conservation, strategies and policies. Madras Agric J. 2023;110(1):58-66. https://doi.org/10.29321/MAJ.10.000715
  12. 12. Moya TB. Resilience of irrigation systems to climate variability and change: a review of the adaptive capacity of Philippine irrigation systems. DLSU Bus Econ Rev. 2018;28:102-20. https://doi.org/10.59588/2243-786X.1555
  13. 13. Koech R, Langat P. Improving irrigation water use efficiency: a review of advances, challenges and opportunities in the Australian context. Water. 2018;10(12):1771. https://doi.org/10.3390/w10121771
  14. 14. Shaw SK, Sharma A, Khatua KK, Oliveto G. An integrated approach to evaluating crop water requirements and irrigation schedule for optimizing furrow irrigation design parameters in Kurnool district, India. Water. 2023;15(10):1801. https://doi.org/10.3390/w15101801
  15. 15. Van Vliet MT, Thorslund J, Strokal M, Hofstra N, Flörke M, Ehalt Macedo H, et al. Global river water quality under climate change and hydroclimatic extremes. Nat Rev Earth Environ. 2023;4(10):687-702. https://doi.org/10.1038/s43017-023-00472-3
  16. 16. Snaddon CD, Davies BR, Wishart MJ, Meador ME, Thoms M. A global overview of inter-basin water transfer schemes, with an appraisal of their ecological, socio-economic and socio-political implications, and recommendations for their management. Water Research Commission Report No. TT120/00. Pretoria: Water Research Commission; 1999.
  17. 17. Xu X, Tan Y, Yang G. Environmental impact assessments of the Three Gorges project in China: issues and interventions. Earth Sci Rev. 2013;124:115-25. https://doi.org/10.1016/j.earscirev.2013.05.007
  18. 18. Williams TO, Faures JM, Namara R, Snyder K. Large-scale irrigated farming system: the potential and challenges to improve food security, livelihoods and ecosystem management. In: Farming systems and food security in Africa. 2019. p. 423-49. https://doi.org/10.4324/9781315658841-13
  19. 19. Kumar P, Choudhury D. Innovative technologies for effective water resources management. In: Izah SC, Ogwu MC, Loukas A, Hamidifar H, editors. Water crises and sustainable management in the global south. Singapore: Springer; 2024. p. 555-94. https://doi.org/10.1007/978-981-97-4966-9_18
  20. 20. Li K, Zhu C, Wu L, Huang L. Problems caused by the Three Gorges Dam construction in the Yangtze River basin: a review. Environ Rev. 2013;21(3):127-35. https://doi.org/10.1139/er-2012-0051
  21. 21. Eldardiry H, Hossain F. A blueprint for adapting high Aswan dam operation in Egypt to challenges of filling and operation of the Grand Ethiopian Renaissance dam. J Hydrol. 2021;598:125708. https://doi.org/10.1016/j.jhydrol.2020.125708
  22. 22. Godfrey SS, Nordblom T, Ip RHL. Business risk profiles for irrigated cotton in the Murrumbidgee catchment of southern New South Wales. In: L B, B C, editors. System solutions for complex problems: proceedings of the 20th Australian Agronomy Conference; 2022 Sep 18–22; Toowoomba, Queensland. Australian Society of Agronomy; 2022. Article 472. p. 481.
  23. 23. Butler A, Fulp T, Prairie J, Witherall A. Water resources management in the Colorado River Basin. In: Handbook of catchment management. 2nd ed. Wiley; 2021. p. 441-63. https://doi.org/10.1002/9781119531241.ch18
  24. 24. Madhavan G, Pazhanivelan S, Madhupriya S, Akchaya K. The impact of climate change on agricultural productivity. In: Comprehensive insights into environmental science. Vol. 1. Stella International Publication; 2024. Chapter 1.
  25. 25. Dhanaraju M, Chenniappan P, Ramalingam K, Pazhanivelan S, Kaliaperumal R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture. 2022;12(10):1745. https://doi.org/10.3390/agriculture12101745
  26. 26. Panneerselvam S, Pazhanivelan S, Ragunath KP, Kumaresan P, Balakrishnan N. Remote sensing and GIS-based water resource monitoring for sustainable crop intensification and diversification. In: GIScience for the sustainable management of water resources. 1st ed. Apple Academic Press; 2022. https://doi.org/10.1201/9781003284512-3
  27. 27. Sobola OO, Amadi DC, Jamala GY. The role of agroforestry in environmental sustainability. IOSR J Agric Vet Sci. 2015;8(5):20-5.
  28. 28. Elseedy M, Mohammed RY, El-Sherpiny MA, Taha AA. Enhancing crop resilience to drought stress: antitranspirants, zeolite and water conservation strategies for strategic crop productivity. J Soil Sci Agric Eng. 2023;14(9):267-74. https://doi.org/10.21608/jssae.2023.233004.1186
  29. 29. Sahu MK, Shwetha HR, Dwarakish GS. State-of-the-art hydrological models and application of the HEC-HMS model: a review. Model Earth Syst Environ. 2023:1-23. https://doi.org/10.1007/s40808-023-01704-7
  30. 30. Bhuvaneswari K, Geethalakshmi V, Lakshmanan A, Srinivasan R, Sekhar NU. The impact of El Nino/Southern Oscillation on hydrology and rice productivity in the Cauvery Basin, India: application of the soil and water assessment tool. Weather Clim Extremes. 2013;2:39-47. https://doi.org/10.1016/j.wace.2013.10.003
  31. 31. Agarwal S, Suchithra AS, Singh SP. Analysis and interpretation of rainfall trend using Mann-Kendall's and Sen's slope method. Indian J Ecol. 2021;48(2):453-7.
  32. 32. Sen PK. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc. 1968;63(324):1379-89. https://doi.org/10.1080/01621459.1968.10480934
  33. 33. Mehta D, Yadav SM. An analysis of rainfall variability and drought over Barmer district of Rajasthan, northwest India. Water Supply. 2021;21(5):2505-17. https://doi.org/10.2166/ws.2021.053
  34. 34. Tian W, Liu X, Wang K, Bai P, Liu C, Liang X. Estimation of global reservoir evaporation losses. J Hydrol. 2022;607:127524. https://doi.org/10.1016/j.jhydrol.2022.127524
  35. 35. Kasiviswanathan KS, Sudheer KP, Soundharajan BS, Adebayo JA. Implications of uncertainty in inflow forecasting on reservoir operation for irrigation. Paddy Water Environ. 2021;19:99-111. https://doi.org/10.1007/s10333-020-00822-7
  36. 36. Moradi AM, Dariane AB, Yang G, Block P. Long-range reservoir inflow forecasts using large-scale climate predictors. Int J Climatol. 2020;40(13):5429-50. https://doi.org/10.1002/joc.6526
  37. 37. Allawi MF, Hussain IR, Salman MI, El-Shafie A. Monthly inflow forecasting utilizing advanced artificial intelligence methods: a case study of Haditha Dam in Iraq. Stoch Environ Res Risk Assess. 2021;35(11):2391-410. https://doi.org/10.1007/s00477-021-02052-7
  38. 38. Samiyev L, Allayorov D, Atakulov D, Babajanov F. The influence of sedimentation reservoir on hydraulic parameters of irrigation channels. IOP Conf Ser Mater Sci Eng. 2020;883:012031. https://doi.org/10.1088/1757-899X/883/1/012031
  39. 39. Gebrechorkos SH, Bernhofer C, Hülsmann S. Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Sci Total Environ. 2020;742:140504. https://doi.org/10.1016/j.scitotenv.2020.140504
  40. 40. Abdel-Fattah MK, Abd-Elmabod SK, Aldosari AA, Elrys AS, Mohamed ES. Multivariate analysis for assessing irrigation water quality: a case study of the Bahr Mouise Canal, Eastern Nile Delta. Water. 2020;12(9):2537. https://doi.org/10.3390/w12092537
  41. 41. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data. 2015;2:150066. https://doi.org/10.1038/sdata.2015.66
  42. 42. Tassi A, Vizzari M. Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and machine learning algorithms. Remote Sens. 2020;12(22):3776. https://doi.org/10.3390/rs12223776
  43. 43. Barathkumar S, Sellamuthu KM, Sathiyabama K, Malathi P, Kumaraperumal R, Devagi P, et al. Groundwater quality assessment in selected polluted hotspots of Tamil Nadu, India using geospatial and statistical approaches. Desalination Water Treat. 2025;322:101047. https://doi.org/10.1016/j.dwt.2025.101047
  44. 44. Kuntla SK. An era of Sentinels in flood management: potential of Sentinel-1, -2, and -3 satellites for effective flood management. Open Geosci. 2021;13(1):1616-42. https://doi.org/10.1515/geo-2020-0325
  45. 45. Sneka K, Pazhanivelan S, Ragunath KP, Raju M, Suganthi A, Satheesh S. Flood inundation mapping using Sentinel-1A satellite data in major blocks of Mayiladuthurai District, Tamil Nadu, India. Int J Plant Soil Sci. 2023;35(19):592-8. https://doi.org/10.9734/ijpss/2023/v35i193589
  46. 46. Rafiei Sardooi E, Azareh A, Eskandari Damaneh H, Skandari Damaneh H. Drought monitoring using MODIS land surface temperature and normalized difference vegetation index products in semi-arid areas of Iran. J Rangel Sci. 2021;11(4):402-18.
  47. 47. Ma C, Johansen K, McCabe MF. Monitoring irrigation events and crop dynamics using Sentinel-1 and Sentinel-2 time series. Remote Sens. 2022;14(5):1205. https://doi.org/10.3390/rs14051205
  48. 48. Manivannan DV, Jagadeeswaran R, Pazhanivelan S, Kumaraperumal R, Raju M, Pangayar Selvi R. Estimation of water spread area in selected tanks of Cuddalore District of Tamil Nadu using Sentinel-1A SAR data. Int J Environ Climate Change. 2023;13(9):3130-6. https://doi.org/10.9734/ijecc/2023/v13i92555
  49. 49. Sakthivel S, Sivamurugan AP, Pazhanivelan S, Ragunath KP, Suganthi A. Assessment of tank water spread area in Cheyyar sub basin using Sentinel-1A data. Int J Environ Climate Change. 2023;13(9):2896-904. https://doi.org/10.9734/ijecc/2023/v13i92524
  50. 50. Pelosi A, Aceto G, Aprile A, Chirico GB. Evaluation of the performance of the global weather dataset AgERA5 for sustainable water management in agriculture: A focus on reference evapotranspiration. In: International Conference on Computational Science and Its Applications. Cham: Springer Nature Switzerland; 2025. p. 283–293. https://doi.org/10.1007/978-3-031-97663-6_25
  51. 51. Elkatoury A, Alazba AA, Radwan F, Kayad A, Mossad A. Evapotranspiration estimation assessment using various satellite-based surface energy balance models in arid climates. Earth Syst Environ. 2024;8(4):1347-69. https://doi.org/10.1007/s41748-024-00501-1
  52. 52. Kamruzzaman M, Almazroui M, Salam MA, Mondol MA, Rahman MM, Deb L, Kundu PK, et al. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardize precipitation evapotranspiration index (SPEI). Sci Rep. 2022;12(1):20694. https://doi.org/10.1038/s41598-022-24146-0
  53. 53. Janarth S, Jagadeeswaran R, Pazhanivelan S, Kannan B, Ragunath KP, Sathiyamoorthy NK. Assessment of agricultural drought in Tamil Nadu using remote sensing techniques. Agric Sci Digest. 2025;45(1):178-86. https://doi.org/10.18805/ag.D-6007
  54. 54. Madhurima U, Karunakaran KR, Sureshkumar D, Pazhanivelan S, Panneerselvam S. Dynamic water requirements for optimal cropping pattern under tank command areas in Andhra Pradesh, India. Agric Res J. 2024;61(4):584-94. https://doi.org/10.5958/2395-146X.2024.00072.9
  55. 55. Vairavamani M, Muthumanickam D, Pazhanivelan S, Kumaraperumal R, Ragunath KP. Crop diversification assessment in tank ayacut areas of lower Palar sub-basin of Chengalpattu District, Tamil Nadu, India using geo-spatial techniques. Int J Environ Climate Change. 2023;13(10):968-80. https://doi.org/10.9734/ijecc/2023/v13i102744
  56. 56. Prakash MA, Pazhanivelan S, Muthumanickam D, Ragunath KP, Sivamurugan AP. Mapping rice area in the Cauvery Delta Zone of Tamil Nadu using Sentinel-1A synthetic aperture radar data. Int J Environ Climate Change. 2023;13(10):195-204. https://doi.org/10.9734/ijecc/2023/v13i102630
  57. 57. Panneerselvam S, Pazhanivelan S, Rajavel M, Vincent S, Kumaresan P, Balakrishnan N. Remote sensing and GIS based water resource monitoring and climate resilient technology for enhancing rice productivity. J Agrometeorol. 2022;24(4):491-8.
  58. 58. Pazhanivelan S, Geethalakshmi V, Samykannu V, Kumaraperumal R, Kancheti M, Kaliaperumal R, et al. Evaluation of SPI and rainfall departure based on multi-satellite precipitation products for meteorological drought monitoring in Tamil Nadu. Water. 2023;15(7):1435. https://doi.org/10.3390/w15071435
  59. 59. Ni J, Wang H, Ma T, Huang R, Ciais P, Li Z, et al. Three Gorges Dam: friend or foe of riverine greenhouse gases? Natl Sci Rev. 2022;9(6):nwac013. https://doi.org/10.1093/nsr/nwac013
  60. 60. Yu D, Shi P, Shao H, Zhu W, Pan Y. Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int J Remote Sens. 2009;30(18):4851-66. https://doi.org/10.1080/01431160802680552
  61. 61. Liao Q, Wang Z, Huang C. Green infrastructure offset the negative ecological effects of urbanization and storing water in the Three Gorges Reservoir area, China. Int J Environ Res Public Health. 2020;17(21):8077. https://doi.org/10.3390/ijerph17218077
  62. 62. Hennig T, Wang W, Magee D, He D. Yunnan’s fast-paced large hydropower development: A powershed-based approach to critically assessing generation and consumption paradigms. Water. 2016;8(10):476. https://doi.org/10.3390/w8100476
  63. 63. Zhang X, Dong Z, Gupta H, Wu G, Li D. Impact of the Three Gorges Dam on the hydrology and ecology of the Yangtze River. Water. 2016;8(12):590. https://doi.org/10.3390/w8120590
  64. 64. Edmonds RL. The Sanxia (Three Gorges) Project: the environmental argument surrounding China’s super dam. Glob Ecol Biogeogr Lett. 1992;2(4):105-25. https://doi.org/10.2307/2997637
  65. 65. Shen ZY, Chen L, Chen T. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrol Earth Syst Sci. 2012;16:121-32. https://doi.org/10.5194/hess-16-121-2012
  66. 66. Li S, Xiong L, Dong L, Zhang J. Effects of the Three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrol Processes. 2013;27(26):3981-93. https://doi.org/10.1002/hyp.9541
  67. 67. Yang L, Zeng S, Xia J, Wang Y, Huang R, Chen M. Effects of the Three Gorges Dam on the downstream streamflow based on a large-scale hydrological and hydrodynamics coupled model. J Hydrol Reg Stud. 2022;40:101039. https://doi.org/10.1016/j.ejrh.2022.101039
  68. 68. Zeng S, Liu X, Xia J, Du H, Chen M, Huang R. Evaluating the hydrological effects of the Three Gorges Reservoir based on a large-scale coupled hydrological-hydrodynamic-dam operation model. J Geogr Sci. 2023;33:999-1022. https://doi.org/10.1007/s11442-023-2117-7
  69. 69. Goharian E, Shaltout M, Erfani M, Eladawy A. Developing an optimized policy tree-based reservoir operation model for High Aswan Dam reservoir, Nile River. Water. 2022;14(7):1061. https://doi.org/10.3390/w14071061
  70. 70. Alnaqbi SA, Alasad S, Aljaghoub H, Alami AH, Abdelkareem MA, Olabi AG. Applicability of hydropower generation and pumped hydro energy storage in the Middle East and North Africa. Energies. 2022;15(7):2412. https://doi.org/10.3390/en15072412
  71. 71. Dam AH, Nile R, Nasser L. Aswan High Dam. 2024.
  72. 72. Tvedt T. The Nile: History’s greatest river. London: Bloomsbury Publishing; 2021. https://doi.org/10.5040/9780755616824
  73. 73. Elshinnawy IA, Almaliki AH. Vulnerability assessment for sea level rise impacts on coastal systems of Gamasa Ras El Bar area, Nile Delta, Egypt. Sustainability. 2021;13(7):3624. https://doi.org/10.3390/su13073624
  74. 74. Sadek MF, Shahin MM, Stigter CJ. Evaporation from the reservoir of the High Aswan Dam, Egypt: a new comparison of relevant methods with limited data. Theor Appl Climatol. 1997;56:57–66. https://doi.org/10.1007/BF00863783
  75. 75. El-Shafie A, Taha MR, Noureldin A. A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan High Dam. Water Resour Manage. 2007;21:533–56. https://doi.org/10.1007/s11269-006-9027-1
  76. 76. Multsch S, Elshamy ME, Batarseh S, Seid AH, Frede HG, Breuer L. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. J Hydrol Reg Stud. 2017;12:315–30. https://doi.org/10.1016/j.ejrh.2017.04.007
  77. 77. Kamal MM, Elhifnawy HE, Elsharkawy AS, Mousa OM. Assessment of hydrological analysis using WMS versus Arc-GIS. In: Proc 12th Int Conf Civil Architecture Eng. 2018. p. 1–10. https://doi.org/10.21608/iccae.2018.30059
  78. 78. Helwa AM, Elgamal MH, Ghanem AH. Dam break analysis of Old Aswan Dam on Nile River using HEC-RAS. Int J Hydrol Sci Technol. 2020;10(6):557–85. https://doi.org/10.1504/IJHST.2020.110568
  79. 79. Stewardson MJ, Guarino F. Basin-scale environmental water delivery in the Murray–Darling, Australia: A hydrological perspective. Freshw Biol. 2018;63(8):969–85. https://doi.org/10.1111/fwb.13102
  80. 80. Coles NA, Camkin J. Irrigation developments in Australia: historical development of irrigation. In: Handbook of irrigation hydrology and management. CRC Press; 2023. p. 3–31. https://doi.org/10.1201/9781003353928-2
  81. 81. Walker GR, Horne AC, Wang QJ, Rendell R. Assessing the impact of irrigation efficiency projects on return flows in the south-eastern Murray–Darling Basin, Australia. Water. 2021;13(10):1366. https://doi.org/10.3390/w13101366
  82. 82. Allan C, Khan S, Davidson B. Assessing social acceptability of management options for harmonising irrigation with environmental concerns: A pilot study from the Murrumbidgee Valley, Australia. Water SA. 2008;34(4):517-22. https://doi.org/10.4314/wsa.v34i4.183665
  83. 83. Furlan EM, Baumgartner LJ, Duncan M, Ellis I, Gruber B, Harrisson K, et al. Swinging back from the brink? Polygamous mating strategies revealed for an iconic threatened freshwater fish. Sci Total Environ. 2024;930:170808. https://doi.org/10.1016/j.scitotenv.2024.170808
  84. 84. Boys CA, Rayner TS, Baumgartner LJ, Doyle KE. Native fish losses due to water extraction in Australian rivers: evidence, impacts and a solution in modern fish- and farm-friendly screens. Ecol Manage Restor. 2021;22(2):134–44. https://doi.org/10.1111/emr.12483
  85. 85. Kingsford RT, Thomas RF. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environ Manage. 2004;34(3):383–96. https://doi.org/10.1007/s00267-004-0250-3
  86. 86. Murray-Darling Basin Authority. Guide to the Murray-Darling Basin Plan. Canberra (Australia): MDBA; 2010. https://doi.org/10.1080/00049180500325702
  87. 87. Frazier P, Page K, Read A. Effects of flow regulation in flow regime on the Murrumbidgee River, south-eastern Australia: an assessment using a daily estimation hydrological model. Aust Geogr. 2005;36(3):301–14. https://doi.org/10.1080/00049180500325702
  88. 88. Wen L, Rogers K, Ling J, Saintilan N. The impacts of river regulation and water diversion on the hydrological drought characteristics in the Lower Murrumbidgee River, Australia. J Hydrol. 2011;405(3–4):382–91. https://doi.org/10.1016/j.jhydrol.2011.05.037
  89. 89. Ren S, Kingsford RT. Modelling impacts of regulation on flows to the Lowbidgee floodplain of the Murrumbidgee River, Australia. J Hydrol. 2014;519:1660–7. https://doi.org/10.1016/j.jhydrol.2014.09.003
  90. 90. van Emmerik THM, Li Z, Sivapalan M, Pande S, Kandasamy J, Savenije HHG, et al. Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health: Murrumbidgee River basin, Australia. Hydrol Earth Syst Sci. 2014;18:4239–59. https://doi.org/10.5194/hess-18-4239-2014
  91. 91. Saha P. Hydrological modeling to assess water availability in the Murrumbidgee catchment in response to different climate and land use change scenarios [thesis]. Bathurst (Australia): Charles Sturt University; 2015. 143 p.
  92. 92. Muhury N, Ayele GT, Balcha SK, Jemberie MA, Teferi E. Basin runoff responses to climate change using a rainfall-runoff hydrological model in Southeast Australia. Atmosphere. 2023;14(2):306. https://doi.org/10.3390/atmos14020306
  93. 93. Kuhn E, Fleck J. The Colorado River: The Story of a Quest for Certainty on a Diminishing River. 2nd ed. Boulder (CO): Johnson Books; 2007.
  94. 94. Herman-Mercer N, Bair L, Hines M, Restrepo-Osorio D, Romero V, Lyde A, et al. Human factors used to estimate and forecast water supply and demand in the Upper Colorado River Basin. Reston (VA): US Geological Survey; 2023. Report No.: 2023-5015. https://doi.org/10.3133/sir20235015
  95. 95. MacDonnell LJ. The law of the Colorado River: coping with severe sustained drought, Part II. 2021.
  96. 96. Juricich R. Colorado River Basin governance, decision making, and alternative approaches. In: World Environmental and Water Resources Congress 2020. Reston (VA): American Society of Civil Engineers; 2020. p. 121–30. https://doi.org/10.1061/9780784482957.013
  97. 97. Frisvold GB, Duval D. Agricultural water footprints and productivity in the Colorado River Basin. Hydrology. 2023;11(1):5. https://doi.org/10.3390/hydrology11010005
  98. 98. Christensen NS, Lettenmaier DP. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci. 2007;11:1417–34. https://doi.org/10.5194/hess-11-1417-2007
  99. 99. Dawadi S, Ahmad S. Changing climatic conditions in the Colorado River Basin: implications for water resources management. J Hydrol. 2012;430:127–41. https://doi.org/10.1016/j.jhydrol.2012.02.010
  100. 100. Ficklin DL, Stewart IT, Maurer EP. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLoS One. 2013;8(8):e71297. https://doi.org/10.1371/journal.pone.0071297
  101. 101. Salehabadi H, Tarboton D, Kuhn E, Udall B, Wheeler K, Rosenberg D, et al. The future hydrology of the Colorado River Basin. The Future of the Colorado River Project. 2020. https://doi.org/10.4211/hs.6d351874f16947609eab585a81c3c60d
  102. 102. Pierce DW, Cayan DR, Goodrich J, Das T, Munévar A. Evaluating global climate models for hydrological studies of the Upper Colorado River Basin. J Am Water Resour Assoc. 2022;58(5):709–34. https://doi.org/10.1111/1752-1688.12974
  103. 103. Tran H, Zhang J, O’Neill MM, et al. A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Sci Data. 2022;9:16. https://doi.org/10.1038/s41597-022-01123-w
  104. 104. Beven K. How to make advances in hydrological modelling. Hydrol Res. 2019;50(6):1481–94. https://doi.org/10.2166/nh.2019.134
  105. 105. Chang FJ, Guo S. Advances in hydrologic forecasts and water resources management. Water. 2020;12(6):1819. https://doi.org/10.3390/w12061819
  106. 106. Kumar V, Kedam N, Sharma KV, Mehta DJ, Caloiero T. Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models. Water. 2023;15(14):2572. https://doi.org/10.3390/w15142572
  107. 107. Purvis L, Dinar A. Are intra-basin and inter-basin water transfers a sustainable policy intervention for addressing water scarcity? Water Secur. 2020;9:100058. https://doi.org/10.1016/j.wasec.2019.100058
  108. 108. Wilder MO, Varady RG, Gerlak AK, Mumme SP, Flessa KW, Zuniga-Teran AA, et al. Hydrodiplomacy and adaptive governance at the US-Mexico border: 75 years of tradition and innovation in transboundary water management. Environ Sci Policy. 2020;112:189–202. https://doi.org/10.1016/j.envsci.2020.05.013
  109. 109. Alamanos A, Rolston A, Papaioannou G. Development of a decision support system for sustainable environmental management and stakeholder engagement. Hydrology. 2021;8(1):40. https://doi.org/10.3390/hydrology8010040
  110. 110. Swainson B, De Loë R, Kreutzwiser R. Sharing water with nature: insights on environmental water allocation from a case study of the Murrumbidgee catchment, Australia. Water Altern. 2011;4(1):15–32.
  111. 111. Pienaar GW, Hughes DA. Linking hydrological uncertainty with equitable allocation for water resources decision-making. Water Resour Manage. 2017;31:269–82. https://doi.org/10.1007/s11269-016-1523-3
  112. 112. Lu Z, Feng Q, Xiao S, Xie J, Zou S, Yang Q, et al. The impacts of the ecological water diversion project on the ecology-hydrology-economy nexus in the lower reaches in an inland river basin. Resour Conserv Recycl. 2021;164:105154. https://doi.org/10.1016/j.resconrec.2020.105154

Downloads

Download data is not yet available.