Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Endophytic fungi associated with Zingiber cassumunar Roxb. and its application in the synthesis of gold nanoparticles

DOI
https://doi.org/10.14719/pst.10284
Submitted
26 June 2025
Published
21-08-2025 — Updated on 16-09-2025
Versions

Abstract

Endophytic fungi are used as an environmentally safe alternative to chemicals for the synthesis of gold nanoparticles . Endophytic fungi associated with medicinal plants are promising candidates due to their ability to produce various bioactive compounds that can efficiently reduce and stabilize gold ions. Among the most commonly used traditional of medicinal plants in northeast India, Zingiber cassumunar Roxb. (Tekhao-yaikhu in Manipuri) is one of the most prominent ones. The endophytic fungi associated with Z. cassumunar Roxb were isolated and identified based on their morphological characteristics as well as the ITS regions of rRNA gene sequences. In this study, 31 endophytic fungal isolates were obtained from 60 healthy samples from the leafy and rhizomatous regions of Z. cassumunar. They were then grouped into 10 taxonomic groups based on the morphological characteristics. Higher endophytic colonization frequency (73 %) and isolation rate (0.73) were observed with the 60 leaf samples while the rhizome samples exhibited colonization frequency of 30 % and isolation rate of 0.30. The fungus Colletotricum gloeosporioides was observed to be the most abundant one with a colonization frequency of 36.6 % and isolation rate of 0.37. Analyses of the morphologically distinct isolates using internal transcribed spacer (ITS) sequences revealed 4 major clades - Sordariomycetes, Dothideomycetes, Eurotiomycetes and Polyporales. Evaluation of the endophytes for their ability to synthesize gold nanoparticles using mycelium-free extracts treated with aqueous chloroauric acid solution, C. gloeosporioides ZCL1 was observed to be the most promising for Au nanoparticle biosynthesis with the reduction of chloroauric acid within 6 h. UV-visible spectrum of the reaction mixture containing chloroauric acid and mycelium-free extracts showed a broad peak at around 520-580 nm. The formation of Au nanoparticles was confirmed using scanning electron micrograph. Further, transmission electron micrographs (TEM) showed anisotropic nanoparticles exhibiting different shapes such as spherical, pentagonal, triangular and hexagonal nanoparticles. The average size of Au nanoparticles was observed to be 28.5 nm ranging from 9-55 nm. The endophytic fungi C. gloeosporioides ZCL1 associated with Z. cassumunar is a promising candidate for environment friendly biosynthesis of Au nanoparticles, which have variety of applications in agriculture, as nano-based formulation of agrochemicals enhancing plant growth by improving nutrient uptake, deliveries, stress tolerance and disease resistance.

References

  1. 1. Jantan IB, Yassin MSM, Chin CB, Chen LL, Sim NL. Antifungal activity of the essential oils of nine Zingiberaceae species. Pharm Biol. 2003;41:392-7. https://doi.org/10.1076/phbi.41.5.392.15941
  2. 2. Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853-8. https://doi.org/10.1038/35002501
  3. 3. Prakash V, Mehrotra BN. Zingiberaceae of North-east India: diversity and taxonomic status. In: Proceedings of the 2nd Symposium on the family Zingiberaceae. 1995:262-73. Available from: https://www.phytojournal.com
  4. 4. Vedaja S. Manipur: Geography and Regional Development. New Delhi, India: Rajesh Publications; 1998.
  5. 5. Jeenapongsa R, Yoovathaworn K, Sriwatanakul KM, Pongprayoon U, Watanakul K. Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J Ethnopharmacol. 2003;87(2-3):143-8. https://doi.org/10.1016/s0378-8741(03)00098-9
  6. 6. Tushar, Basak S, Sarma GC, Rangan L. Ethnomedical uses of Zingiberaceous plants of Northeast India. J Ethnopharmacol. 2010;132(1):286-96. https://doi.org/10.1016/j.jep.2010.08.032
  7. 7. Ozaki Y, Kawahara N, Harada M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles. Chem Pharm Bull. 1991;39(9):2353-6. https://doi.org/10.1248/cpb.39.2353
  8. 8. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18:448-59. https://doi.org/10.1039/b100918o
  9. 9. Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67:491-502. https://doi.org/10.1128/MMBR.67.4.491-502.2003
  10. 10. Bhagobaty RK, Joshi SR. Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J Metabolomics Syst Biol. 2011;2(2):20-31. Available from: http://www.academicjournals.org/jmsb
  11. 11. Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol. 2006;22:1185-95. https://doi.org/10.1007/s11274-006-9160-2
  12. 12. White T, Bruns T, Lee S, Taylor J. PCR protocols. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ, editors. A guide to methods and applications. San Diego: Academic Press; 1990:315-22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  13. 13. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol. 1993;2:113-8. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
  14. 14. Lord NS, Kaplan CW, Shank P, Kitts CL, Elrod SL. Assessment of fungal diversity using terminal restriction fragment (TRF) pattern analysis: comparison of 18S and ITS ribosomal regions. FEMS Microbiol Ecol. 2002;42:327-37. https://doi.org/10.1111/j.1574-6941.2002.tb01022.x
  15. 15. Anderson IC, Campbell CD, Prosser JI. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol. 2003;5:36-47. https://doi.org/10.1046/j.1462-2920.2003.00383.x
  16. 16. Riddin TL, Gericke M, Whiteley CG. Analysis of the inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology. 2006;17:3482-9. https://doi.org/10.1088/0957-4484/17/14/021
  17. 17. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2003;28:313-8. https://doi.org/10.1016/S0927-7765(02)00174-1
  18. 18. Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822-6. https://doi.org/10.1039/B303808B
  19. 19. Senapati S, Ahmed A, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small. 2005;1:517-20. https://doi.org/10.1002/smll.200400053
  20. 20. Longoria E, Vilchis-Nestor A, Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces. 2011;83:42-8. https://doi.org/10.1016/j.colsurfb.2010.10.035
  21. 21. Kar PK, Murmu S, Saha S, Tandon V, Acharya K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One. 2014;9(1):e84693. https://doi.org/10.1371/journal.pone.0084693
  22. 22. Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. 2015;8(6):904-15. https://doi.org/10.1111/1751-7915.12151
  23. 23. Qian Y, Yu H, He D, Yang H, Wang W, Wan X, et al. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng. 2013;36(11):1613-9. https://doi.org/10.1007/s00449-013-0937-z
  24. 24. Leck A. Preparation of lactophenol cotton blue slide mounts. Community Eye Health. 1999;12(30):24. PMID: 17491984; PMCID: PMC1706009
  25. 25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
  26. 26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  27. 27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  28. 28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783-91. https://doi.org/10.2307/2408678
  29. 29. Abdelhalim MAK, Mady MM, Ghannam MM. Physical properties of different gold nanoparticles: ultraviolet-visible. J Nanomed Nanotechnol. 2012;3:3-7. https://doi.org/10.4172/2157-7439.1000133
  30. 30. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1(1):47-53. https://doi.org/10.1166/jbn.2005.012
  31. 31. Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S. Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers. 2005;18:117-33. Available from: https://www.fungaldiversity.org
  32. 32. Kumaresanand V, Suryanarayanan TS. Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res. 2001;105(11):1388-91. https://doi.org/10.1017/S0953756201004841
  33. 33. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030-5. https://doi.org/10.1073/pnas.0404206101
  34. 34. Redman RS, Dunigan DD, Rodriguez RJ. Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol. 2001;151:705-16. https://doi.org/10.1046/j.0028-646x.2001.00210.x
  35. 35. Ding X, Liu K, Deng B, Chen W, Li W, Liu F. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J Microbiol Biotechnol. 2013;29:1831. https://doi.org/10.1007/s11274-013-1345-x
  36. 36. Gonzaga LL, Costa LEO, Santos TT, Araújo EF, Queiroz MV. Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol. 2015;118:485-96. https://doi.org/10.1111/jam.12696
  37. 37. Niu X, Gao H, Qi J, Chen M, Tao A, Xu J, et al. Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China. Sci Rep. 2016;6:25179. https://doi.org/10.1038/srep25179
  38. 38. Waculicz-Andrade CE, Savi DC, Bini AP, Adamoski D, Goulin EH, Silva Jr GJ, et al. Colletotrichum gloeosporioides sensu stricto: an endophytic species or citrus pathogen in Brazil? Australas Plant Pathol. 2017;46(2):191-203. https://doi.org/10.1007/s13313-017-0476-1
  39. 39. Brasier CM. Fungal species in practice: identifying species units in fungi. In: Claridge MF, Dawah HA, Wilson MR, editors. Species: the units of biodiversity. London: Chapman and Hall; 1997. p. 135-70. Available from: https://www.cabidigitallibrary.org
  40. 40. Petersen RH, Hughes KW. Species and speciation in mushrooms: development of a species concept poses difficulties. BioScience. 1999;49:440-52. https://doi.org/10.2307/1313552
  41. 41. Burnett J. Fungal populations and species. New York: Oxford University Press; 2003.
  42. 42. Kohn LM. The clonal dynamic in wild and agricultural plant-pathogen populations. Can J Bot. 1995;73(S1):1231-40. https://doi.org/10.1139/b95-383
  43. 43. Harrington TC, Rizzo DM. Defining species in the fungi. In: Worral JJ, editor. Structure and Dynamics of Fungal Populations. Dordrecht: Kluwer Academic; 1999. p. 43-70. https://doi.org/10.1007/978-94-011-4423-0_3
  44. 44. Talhinhas P, Sreenivasaprasad S, Neves-Martins J, Oliveira H. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology. 2002;92:986-96. https://doi.org/10.1094/PHYTO.2002.92.9.986
  45. 45. Grunig CR, Brunner PC, Duò A, Sieber TN. Suitability of methods for species recognition in the Phialocephala fortinii - Acephala applanata species complex using DNA analysis. Fungal Genet Biol. 2007;44:773-88. https://doi.org/10.1016/j.fgb.2006.12.008
  46. 46. Manjunath HM, Joshi CG, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus Penicillium citrinum. IET Nanobiotechnol. 2017;11(1):40-4. https://doi.org/10.1049/iet-nbt.2016.0065
  47. 47. Ejaz AS, Absar A, Anju J, Asad S, Shadab K, Mahesh K, et al. Biosynthesis of anti-proliferative gold nanoparticles using endophytic Fusarium oxysporum strain isolated from neem (Azadirachta indica) leaves. Curr Top Med Chem. 2016;16(18):2036-42. https://doi.org/10.2174/1568026616666160215160644
  48. 48. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788-800. https://doi.org/10.1021/la9502711
  49. 49. Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47:160-4. https://doi.org/10.1016/j.colsurfb.2005.11.026
  50. 50. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem. 2002;3:461-3. https://doi.org/10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
  51. 51. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 2007;61:3984. https://doi.org/10.1016/j.matlet.2007.01.018
  52. 52. Das SK, Marsili E. A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev Environ Sci Biotechnol. 2010;9:19. https://doi.org/10.1007/s11157-010-9188-5
  53. 53. Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed. 2017;15(4):241-8. https://doi.org/10.1016/j.jab.2017.03.004

Downloads

Download data is not yet available.