Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Influence of pre-harvest spray of cypermethrin on residual levels and quality of strawberry fruit

DOI
https://doi.org/10.14719/pst.10289
Submitted
26 June 2025
Published
13-11-2025
Versions

Abstract

Pesticides increase agricultural production, but they also have negative impacts on human health when used in excess. Pesticide residues must be lower than the maximum residual limits (MRLs) for safe consumption. Field investigations were done in 2021 to assess the residues of the pyrethroid insecticide cypermethrin (Ripcord 10E) in ripe strawberry fruits. Following insecticide application, residue levels were assessed at different harvest intervals: 0 (2 hr), 1, 3, 5, 7, 10 and 12 days. According to the findings, after spraying (DAS), strawberry fruits had the highest residual levels (0.874 mg/kg). Up to 7 DAS, the observed residual level was higher (0.101 mg/kg) than maximum residue limits of European Union (EU-MRLs). On 10 DAS, the measured residue level decreased below the MRLs. As a result of our findings, Pre-Harvest Interval (PHI) of cypermethrin was detected for strawberries up to 10 DAS. The data showed that no pesticide residues were identified at 12 DAS. Insecticide spraying has an impact on strawberry quality as well. Fruits' phenolic content increased steadily between 1 and 7 DAS of cypermethrin. Pre-harvest cypermethrin spray can delay the increase of TSS and sustain TA content. Therefore, it can be said that the pesticide residues found were lower than the corresponding EU-MRLs, indicating that picked strawberries are safe for consumers.

References

  1. 1. Ali A, Ghafoor A, Usman M, Bashir MK, Javed MI, Arsalan M. Valuation of cost and returns of strawberry in Punjab, Pakistan. Pak J Agric Sci. 2021;58(1):283-90.
  2. 2. Striegel L, Chebib S, Netzel ME, Rychlik M. Improved stable isotope dilution assay for dietary folates using LC-MS/MS and its application to strawberries. Front Chem. 2018;6:11. https://doi.org/10.3389/fchem.2018.00011
  3. 3. Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, et al. Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules. 2021;26(13):4021. https://doi.org/10.3390/molecules26134021
  4. 4. Aljawasim BD, Samtani JB, Rahman M. New insights in the detection and management of anthracnose diseases in strawberries. Plants. 2023;12(21):3704. https://doi.org/10.3390/plants12213704
  5. 5. Bozbuga R, Uluisik S, Kara PA, Yuceer S, Gunacti H, Guler PG, et al. Pests, diseases, nematodes and weeds management on strawberries. In: Recent Studies on Strawberries. 2022. https://doi.org/10.5772/intechopen.103925
  6. 6. Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon. 2024;10(7):e29128. https://doi.org/10.1016/j.heliyon.2024.e29128
  7. 7. Negi YK, Sajwan P, Uniyal S, Mishra AC. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci Hortic. 2021;283:110038. https://doi.org/10.1016/j.scienta.2021.110038
  8. 8. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxicol. 2021;9(3):42. https://doi.org/10.3390/toxics9030042
  9. 9. Chatterjee S, Basak P, Chaklader M, Das P, Pereira JA, Chaudhuri S, et al. Pesticide induced marrow toxicity and effects on marrow cell population and on hematopoietic stroma. Exp Toxicol Pathol. 2013;65(3):287-95. https://doi.org/10.1016/j.etp.2011.09.002
  10. 10. Zhou W, Li M, Achal VA. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg Contam. 2024;11(1):100410. https://doi.org/10.1016/j.emcon.2024.100410
  11. 11. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GP, Handa N, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1:1-16. https://doi.org/10.1007/s42452-019-1485-1
  12. 12. Chu Y, Tong Z, Dong X, Sun M, Gao T, Duan J, et al. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem J. 2020;156:104975. https://doi.org/10.1016/j.microc.2020.104975
  13. 13. Lozowicka B, Jankowska M, Hrynko I, Kaczynski P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ Monit Assess. 2015;188:1-19. https://doi.org/10.1007/s10661-015-4850-6
  14. 14. Authority EF, Anastassiadou M, Bernasconi G, Brancato A, Cabrera LC, Ferreira L, et al. Modification of the existing maximum residue level for phenmedipham in strawberries. EFSA J. 2021;19(2):e06436. https://doi.org/10.2903/j.efsa.2021.6436
  15. 15. Mutengwe MT, Chidamba L, Korsten L. Monitoring pesticide residues in fruits and vegetables at two of the biggest fresh produce markets in Africa. J Food Prot. 2016;79(11):1938-45. https://doi.org/10.4315/0362-028X.JFP-16-190
  16. 16. Singh AP, Savaldi-Goldstein S. Growth control: brassinosteroid activity gets context. J Exp Bot. 2015;66(4):1123-32. https://doi.org/10.1093/jxb/erv026
  17. 17. Jallow MF, Awadh DG, Albaho MS, Devi VY, Ahmad N. Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int J Environ Res Public Health. 2017;14(8):833. https://doi.org/10.3390/ijerph14080833
  18. 18. Hasan R, Alam MM, Rahman SM, Sultana D, Prodhan MD. Monitoring of pesticide residues in vegetables collected from retail markets of Dhaka district of Bangladesh using QuEChERS extraction and gas chromatography. Asian-Australas J Food Saf Secur. 2021;5(2):63-70. https://doi.org/10.3329/aajfss.v5i2.56957
  19. 19. Rahman M, Hoque MS, Bhowmik S, Ferdousi S, Kabiraz MP, van Brakel ML. Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon. 2021;7(3):e06390. https://doi.org/10.1016/j.heliyon.2021.e06390
  20. 20. Solanki VH, Singh S, Gandhi KD, Patel KG, Patel KN. Persistence behaviour of pre-mix formulation of profenophos and cypermethrin in/on sapota fruit. Int J Curr Microbiol Appl Sci. 2019;8(1):1250-60. https://doi.org/10.20546/ijcmas.2019.801.132
  21. 21. Chauhan R, Singh D, Monga S, Kumari B. Persistence and effect of decontamination processes on reduction of cypermethrin in okra (Abelmoschus esculentus) fruits. Indian J Agric Sci. 2018;88(12):1926-31. https://doi.org/10.56093/ijas.v88i12.85449
  22. 22. Prodhan MD, Rahman MA, Ahmed MS, Kabir KH. Quantification of organophosphorus and organochlorine insecticide residues from fish samples using simple GC technique. Bangladesh J Agric. 2009;2(2):197-204.
  23. 23. Patil VM, Singh S, Thorat SS, Patel KG, Patel ZP. Persistence of different insecticides in chili fruits. Int J Chem Stud. 2019;7(3):2132-5.
  24. 24. Parmar KD, Korat DM, Shah PG, Singh S. Dissipation and decontamination of some pesticides in/on okra. Pestic Res J. 2012;24(1):42-6.
  25. 25. Shalaby A. Residues of lambda-cyhalothrin insecticide and its biochemical effects on sweet pepper fruits. J Product Dev. 2017;22(1):65-81. https://doi.org/10.21608/jpd.2017.41707
  26. 26. Chandra S, Kumar M, Mahindrakar AN, Shinde LP. Persistence pattern of chlorpyriphos, cypermethrin and monocrotophos in okra. Int J Adv Res. 2014;12:738-43.
  27. 27. Fatema M, Rahman MM, Kabir KH, Mahmudunnabi M, Akter MA. Residues of insecticide in farm and market samples of eggplant in Bangladesh. J Entomol Zool Stud. 2013;1(6):147-50.
  28. 28. Maruf SA, Ahmed JU, Khan JA. Seasonal and off-seasonal vegetables production in Maulvibazar district: insight from profitability, price variations and risk management perspective. J Bangladesh Agril Univ. 2021;19(1):99-108. https://doi.org/10.5455/JBAU.48118
  29. 29. Rayhan S, Haque FTI, Muid N, Amin MR. Uses and abuses of pesticides in Bangladesh. J Ecol. 2024;6(1):101. https://doi.org/10.59619/ej.6.1.12
  30. 30. Khatun P, Islam A, Sachi S, Islam MZ, Islam P. Pesticides in vegetable production in Bangladesh: a systemic review of contamination levels and associated health risks in the last decade. Toxicol Rep. 2023;11:199-211. https://doi.org/10.1016/j.toxrep.2023.09.003
  31. 31. European Food Safety Authority, Carrasco Cabrera L, Di Piazza G, Dujardin B, Marchese E, Medina Pastor P. The 2022 European Union report on pesticide residues in food. EFSA J. 2024;22(4):e8753. https://doi.org/10.2903/j.efsa.2024.8753
  32. 32. Auyon ST, Ahmed MS, Usha KF, Islam MA. Determination of pre-harvest interval of cypermethrin and chlorpyrifos in tomato and yard long bean. J Bangladesh Agril Univ. 2024;22(4):460-7. https://doi.org/10.3329/jbau.v22i4.78854
  33. 33. Amer A, El-Awami IO, Elsiddig FI, Aessa M, Albanqeeyah SA. Patterns of natural degradation of cypermethrin in tomato fruits, water and soil under the desert environment of Ogla Oasis, Cyrenaica-Libya. J Exp Biol Agric Sci. 2015;3:458-63. https://doi.org/10.18006/2015.3(5).458.463
  34. 34. Parween T, Jan S, Fatma T. Assessing the impact of chlorpyrifos on growth, photosynthetic pigments and yield in Vigna radiata L. at different phenological stages. Afr J Agric Res. 2011;6:4432-40.
  35. 35. Shalaby S, Gad N. Effects of insecticide residues on some quality attributes in tomato fruits and determination of their residues. Int J PharmTech Res. 2016;9(12):360-71.
  36. 36. Hatamleh AA, Danish M, Al-Dosary MA, El-Zaidy M, Ali S. Physiological and oxidative stress responses of Solanum lycopersicum (L.) (tomato) when exposed to different chemical pesticides. RSC Adv. 2022;12:7237. https://doi.org/10.1039/D1RA09440H
  37. 37. Gross J. Pigments in vegetables: chlorophylls and carotenoids. Springer Sci Bus Med. 2012.
  38. 38. Yang CM, Lee CN, Chou CH. Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: I. Inhibition of supply-orientation. Bot Bull Acad Sin. 2002;43:299-304.

Downloads

Download data is not yet available.