Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Drip fertigation of water-soluble fertilizers: A tool to enhance nutrient and water use efficiency- A comprehensive review

DOI
https://doi.org/10.14719/pst.10298
Submitted
26 June 2025
Published
03-10-2025

Abstract

Drip fertigation, which integrates drip irrigation with the application of water-soluble fertilizers, stands out as a highly efficient and sustainable agricultural technique. By delivering precise amounts of water and nutrients directly to the plant root zone, this method optimizes both water and nutrient use, significantly boosting crop yields while minimizing environmental impact. This is especially valuable in arid and semi-arid regions, where water scarcity and soil degradation are major concerns. One of the key benefits of drip fertigation is its ability to drastically reduce water wastage. The targeted delivery system minimizes evaporation, runoff and deep percolation losses, resulting in Water Use Efficiency (WUE) far superior to that of traditional irrigation methods. This is crucial for conserving limited water resources and ensuring the sustainability of agriculture in water-stressed areas. Additionally, the integration of fertilizers into the irrigation system enhances Nutrient Use Efficiency (NUE) by supplying nutrients in amounts closely matched to crop needs. This reduces losses from leaching and runoff, maintains soil fertility and lowers the risk of contaminating nearby water bodies. Drip fertigation also supports better crop growth and yield by providing controlled, stage-specific nutrition, which improves growth parameters such as plant height, leaf area and biomass. This leads to higher yields, improved crop quality and greater economic returns for farmers due to reduced input costs and increased productivity. Overall, drip fertigation not only conserves resources and supports food security but also promotes environmentally responsible and resilient farming practices.

References

  1. 1. Godde CM, Garnett T, Thornton PK, Ash AJ, Herrero M. Grazing systems expansion and intensification: drivers, dynamics and trade-offs. Glob Food Sec. 2018;16:93-105. https://doi.org/10.1016/j.gfs.2017.11.003
  2. 2. Drewry JJ, Carrick S, Penny V, Houlbrooke DJ, Laurenson S, Mesman NL. Effects of irrigation on soil physical properties in predominantly pastoral farming systems: A review. N Z J Agric Res. 2021;64(4):483-507. https://doi.org/10.1080/00288233.2020.1742745
  3. 3. Otieno M, editor. Water-use efficiency, water quality and irrigation. In: Sustainable agroecological practices in Sub-Saharan Africa in the face of climate change. Cham, Switzerland. Springer. 2024. p. 15-9. https://doi.org/10.1007/978-3-031-70472-7_2
  4. 4. El-Hazek AN. Challenges for optimum design of surface irrigation systems. Irriga. 2016;5(2):6. https://doi.org/10.9734/JSRR/2016/27504
  5. 5. Darouich H, Cameira MR, Gonçalves JM, Paredes P, Pereira LS. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: water saving vs. economic returns. Water. 2017;9(1):50. https://doi.org/10.3390/w9010050
  6. 6. Santosh T, Maitra S. Effect of drip irrigation and plastic mulch on yield and quality of ginger (Zingiber officinale). Res Crops. 2022;23(1):211-9. https://doi.org/10.31830/2348-542.2022.030
  7. 7. Liu R, Kang Y, Zhang C, Pei L, Wan S, Jiang S, et al. Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutrient Cycling Agroecosyst. 2014;98:295-307. https://doi.org/10.1007/s10705-014-9612-2
  8. 8. Kadasiddappa M, Rao VP, Reddy KY, Ramulu V, Devi MU, Reddy SN. Effect of irrigation (drip/surface) on sunflower growth, seed and oil yield, nutrient uptake and water use efficiency- A review. Agric Rev. 2017;38(2). https://doi.org/10.18805/ag.v38i02.7947
  9. 9. Rajput T, Patel N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric Water Manag. 2006;79(3):293-311. https://doi.org/10.1016/j.agwat.2005.03.009
  10. 10. Malhotra SK. Water soluble fertilizers in horticultural crops - An appraisal. Indian J Agric Sci. 2016;86(10):1245-56. https://doi.org/10.56093/ijas.v86i10.62095
  11. 11. Azad N, Behmanesh J, Rezaverdinejad V, Abbasi F, Navabian M. Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agric Water Manag. 2018;208:344-56. https://doi.org/10.1016/j.agwat.2018.06.030
  12. 12. Pramanik S, Patra SK. Growth, yield, quality and irrigation water use efficiency of banana under drip irrigation and fertigation in the gangetic plain of West Bengal. World J Agric Sci. 2016;12(3):220-8. https://doi.org/10.5829/idosi.wjas.2016.12.3.1913
  13. 13. Jain N, Meena H. Improving productivity of groundnut (Arachis hypogaea) by using water soluble fertilizer through drip irrigation. Indian J Agron. 2015;60(1):109-15.
  14. 14. Solaimalai A, Baskar M, Sadasakthi A, Subburamu K. Fertigation in high value crops-A review. Agric Rev. 2005;26(1):1-13.
  15. 15. Baskar P, Jagannathan R. Resource use efficiency, productivity and profitability of Bt Cotton (interspecific) as influenced by crop geometry and drip fertigation. Indian J Agric Res. 2021;55(3). https://doi.org/10.18805/IJARe.A-5485
  16. 16. Ramachandrula VR, Kasa RR. Prevention and treatment of drip emitter clogging: A review of various innovative methods. Water Pract Technol. 2022;17(10):2059-70. https://doi.org/10.2166/wpt.2022.115
  17. 17. Çetin Ö, Akalp E. Efficient use of water and fertilizers in irrigated agriculture: drip irrigation and fertigation. Acta Hortic Regiotecturae. 2019;2(2019):97-102. https://doi.org/10.2478/ahr-2019-0019
  18. 18. Ebrahimian H, Keshavarz MR, Playán E. Surface fertigation: A review, gaps and needs. Span J Agric Res. 2014;12(3):820-37. https://doi.org/10.5424/sjar/2014123-5393
  19. 19. Meena V, Dotaniya ML, Meena MD, Jat RS, Meena MK, Choudhary RL, et al. Conjoint application of nutrients as customized fertilizers influences growth and yield characteristics of Brassica juncea L., augmented profitability and nutrient use efficiency indices. J Soil Sci Plant Nutr. 2024:1-16. https://doi.org/10.1007/s42729-024-02062-8
  20. 20. Shukla M, Sadhu A, Chinchmalatpure AR, Prasad I, Kumar S, Camus D. Fertigation-modern technique of fertilizer application. Indian Farmer. 2018;5(9):1062-71.
  21. 21. Chien S, Prochnow L, Tu S, Snyder C. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling Agroecosyst. 2011;89(2):229-55. https://doi.org/10.1007/s10705-010-9390-4
  22. 22. Krein D, Rosseto M, Cemin F, Massuda L, Dettmer A. Recent trends and technologies for reduced environmental impacts of fertilizers: A review. Int J Environ Sci Technol. 2023;20(11):12903-18. https://doi.org/10.1007/s13762-023-04929-2
  23. 23. Suman J, Rakshit A, Patra A, Dutta A, Tripathi VK, Mohapatra KK, et al. Enhanced efficiency N fertilizers: An effective strategy to improve use efficiency and ecological sustainability. J Soil Sci Plant Nutr. 2023;23(2):1472-88. https://doi.org/10.1007/s42729-023-01237-z
  24. 24. Aziz T, Maqsood MA, Kanwal S, Hussain S, Ahmad HR, Sabir M. Fertilizers and environment: Issues and challenges. In: Hakeem K, editor. Crop production and global environmental issues. Cham: Springer. 2015. p. 575-98. https://doi.org/10.1007/978-3-319-23162-4_21
  25. 25. Patel G. Water soluble fertilisers-for efficient and balanced fertigation. 2011;86(10): 1245-56.
  26. 26. Fanish SA, Muthukrishnan P. Nutrient distribution under drip fertigation systems. World J Agric Sci. 2013;9(3):277-83. https://doi.org/10.5829/idosi.wjas.2013.9.3.2941
  27. 27. Badr M, Abou Hussein S, El-Tohamy W, Gruda N. Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands. Gesunde Pflanz. 2010;62(1):11-9. https://doi.org/10.1007/s10343-010-0219-5
  28. 28. Suvarna M, Singh GK. Water soluble fertilizers in Indian agriculture. Indian J Fertil. 2021;17(4):290-300.
  29. 29. Samudin S, Kuswantoro H. Effect of Rhizobium inoculation to nodulation and growth of soybean (Glycine max (L.) Merrill) germplasm. Legume Res. 2018;41(2):303-10. https://doi.org/10.18805/LR-385
  30. 30. Villalobos FJ, Quemada M, Delgado A, García-Tejera O. Fertigation. In: Villalobos FJ, Fereres E, editors. Principles of agronomy for sustainable agriculture. Cham: Springer. 2024. p. 407-24. https://doi.org/10.1007/978-3-319-46116-8_27
  31. 31. Gupta AJ, Chattoo M, Singh L. Drip irrigation and fertigation technology for improved yield, quality, water and fertilizer use efficiency in hybrid tomato. J AgriSearch. 2015;2(2):94-9.
  32. 32. Ayars J, Phene C, Hutmacher R, Davis K, Schoneman R, Vail S, et al. Subsurface drip irrigation of row crops: A review of 15 years of research at the Water Management Research Laboratory. Agric Water Manag. 1999;42(1):1-27. https://doi.org/10.1016/S0378-3774(99)00025-6
  33. 33. Hebbar S, Ramachandrappa B, Nanjappa H, Prabhakar M. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill.). Eur J Agron. 2004;21(1):117-27. https://doi.org/10.1016/S1161-0301(03)00091-1
  34. 34. Kumar M, Rajput T, Patel N. Impact of fertigation frequency on growth and yield parameters of baby corn (Zea mays) under drip irrigation. 2015;85(3):397-40 https://doi.org/10.56093/ijas.v85i3.471743
  35. 35. Karlberg L, Rockström J, Annandale JG, Steyn JM. Low-cost drip irrigation-a suitable technology for southern Africa?: an example with tomatoes using saline irrigation water. Agric Water Manag. 2007;89(1-2):59-70. https://doi.org/10.1016/j.agwat.2006.12.011
  36. 36. Narayanamoorthy A. Drip irrigation in India: can it solve water scarcity? Water Policy. 2004;6(2):117-30. https://doi.org/10.2166/wp.2004.0008
  37. 37. Prabhakar M, Vijaya Savanur VS, Naik C. Fertigation studies in hybrid tomato. Indian J Hortic. 2001;49:98-100.
  38. 38. Singh A, Dass A, Sudhishri S, Singh V, Shekhawat K, Meena M, et al. Sub-surface drip-fertigation and legume residue improved maize yield and nitrogen use. Nutrient Cycling Agroecosyst. 2024;129(2):205-21. https://doi.org/10.1007/s10705-024-10371-8
  39. 39. Zhou Y, He J, Liu Y, Liu H, Wang T, Liu Y, et al. Aerated drip irrigation improves watermelon yield, quality, water and fertilizer use efficiency by changing plant biomass and nutrient partitioning. Irrig Sci. 2023;41(6):739-48. https://doi.org/10.1007/s00271-023-00853-y
  40. 40. Chávez C, Limón-Jiménez I, Espinoza-Alcántara B, López-Hernández JA, Bárcenas-Ferruzca E, Trejo-Alonso J. Water-use efficiency and productivity improvements in surface irrigation systems. Agronomy. 2020;10(11):1759. https://doi.org/10.3390/agronomy10111759
  41. 41. Ali M, Talukder M. Increasing water productivity in crop production-a synthesis. Agric Water Manag. 2008;95(11):1201-13. https://doi.org/10.1016/j.agwat.2008.06.008
  42. 42. Guo D, Chen C, Zhou B, Ma D, Batchelor WD, Han X, et al. Drip fertigation with relatively low water and N input achieved higher grain yield of maize by improving pre-and post-silking dry matter accumulation. Sustainability. 2022;14(13):7850. https://doi.org/10.3390/su14137850
  43. 43. Kumar R, Khanna R. Comparative study of different irrigation methods on tomato crop (Lycopersicon esculentum) in western Uttar Pradesh, India. Int J Chem Stud. 2019;7:59-64.
  44. 44. Kumar R, Mishra R, Gupta HP, Dutta T. Smart sensing for agriculture: applications, advancements and challenges. IEEE Consum Electron Mag. 2021;10(4):51-6. https://doi.org/10.1109/MCE.2021.3049623
  45. 45. Feng H, Dou Z, Jiang W, Mahmood H, Liao Z, Li A. Optimal water and nitrogen regimes increased fruit yield and water use efficiency by improving root characteristics of drip-fertigated greenhouse tomato (Solanum lycopersicum L.). Agronomy. 2024;14(10):2439. https://doi.org/10.3390/agronomy14102439
  46. 46. Liu M, Wang G, Liang F, Li Q, Tian Y, Jia H. Optimal irrigation levels can improve maize growth, yield and water use efficiency under drip irrigation in northwest China. Water. 2022;14(23):3822. https://doi.org/10.3390/w14233822
  47. 47. Vaddula Y, Singh K. Progression of drip irrigation and fertigation in cotton across the globe and its future perspectives for sustainable agriculture: An overview. Appl Water Sci. 2023;13(9):177. https://doi.org/10.1007/s13201-023-01986-3
  48. 48. Fuentes C, Enciso J, Nelson SD, Anciso J, Setamou M, Elsayed-Farag S. Yield production and water use efficiency under furrow and drip irrigation systems for watermelon in South Texas. Subtrop Agric Environ. 2018;69:1-7.
  49. 49. Igbadun HE, Ramalan A, Oiganji E. Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria. Agric Water Manag. 2012;109:162-9. https://doi.org/10.1016/j.agwat.2012.03.006
  50. 50. Wang J, Wang C, Long H, Bryant R, Drohan PJ, Qu F. Effects of nitrogen reduction on the agronomic characteristics, quality and water and fertilizer use efficiency of tomato (Lycopersicon esculintum Mill.) between drip fertigation and negative-pressure fertigation. Irrig Sci. 2024:1-15. https://doi.org/10.1007/s00271-024-00933-7
  51. 51. Pramanik S, Patra SK, Ghosh S, Roy D, Datta A. Drip-mediated deficit irrigation and sub-optimal fertigation management strategy can boost yield, soil nutrient availability, plant utilization and soil organic carbon in banana plantation. J Soil Sci Plant Nutr. 2024;24(2):3843-60. https://doi.org/10.1007/s42729-024-01804-Y
  52. 52. Vairavan C, Thiyageshwari S, Selvi D, Malarvizhi P, Teli KG, Dharani S. Effect of TNAU-water soluble fertilizers (TNAU-WSF) on nutrient uptake and nutrient use efficiencies of small onion (Allium cepa var. aggregatum). Int J Plant Soil Sci. 2023;35(18):358-65. https://doi.org/10.9734/ijpss/2023/v35i183298
  53. 53. Saroha A, Kotiyal A, Thakur A. Climate-resilient fertilizer management for crop production. In: Hasanuzzaman M, editor. Climate-resilient agriculture, Vol 2: Agro-biotechnological advancement for crop production. Cham, Switzerland: Springer. 2023. p. 61-79. https://doi.org/10.1007/978-3-031-37428-9_4
  54. 54. Dou C, Sun Y. Effect of different nitrogen levels on water and nitrate distribution in aeolian sandy soil under drip irrigation. Agronomy. 2024;14(4):798. https://doi.org/10.3390/agronomy14040798
  55. 55. Gabriel JL, Quemada M. Water management for enhancing crop nutrient use efficiency and reducing losses. In: Tei F, Nicola S, Benincasa P, editors. Advances in research on fertilization management of vegetable crops. Cham, Switzerland: Springer. 2017. p. 247-65. https://doi.org/10.1007/978-3-319-53626-2_9
  56. 56. Hardie M, Ridges J, Swarts N, Close D. Drip irrigation wetting patterns and nitrate distribution: Comparison between electrical resistivity (ERI), dye tracer and 2D soil-water modelling approaches. Irrig Sci. 2018;36:97-110. https://doi.org/10.1007/s00271-017-0567-3
  57. 57. Asadi ME, Clemente RS, Gupta AD, Loof R, Hansen GK. Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand. Agric Water Manag. 2002;52(3):197-213. https://doi.org/10.1016/S0378-3774(01)00136-6
  58. 58. Zhao G, Luo X, Wang Z, Sheng G, Liu W, Wang Y. Effects of subsurface drip fertigation on potato growth, yield and soil moisture dynamics. Front Sustain Food Syst. 2024;8:1485377. https://doi.org/10.3389/fsufs.2024.1485377
  59. 59. Du R, Li Z, Xiang Y, Sun T, Liu X, Shi H. Drip fertigation increases maize grain yield by affecting phenology, grain filling process, biomass accumulation and translocation: A 4-year field trial. Plants. 2024;13(14):1903. https://doi.org/10.3390/plants13141903
  60. 60. Żarski J, Kuśmierek-Tomaszewska R. Effects of drip irrigation and top dressing nitrogen fertigation on Maize grain yield in central Poland. Agronomy. 2023;13(2):360. https://doi.org/10.3390/agronomy13020360
  61. 61. Ma X, Yang Y, Tan Z, Cheng Y, Wang T, Yang L. Climate-smart drip irrigation with fertilizer coupling strategies to improve tomato yield, quality, resources use efficiency and mitigate greenhouse gases emissions. Land. 2024;13(11):1872. https://doi.org/10.3390/land13111872
  62. 62. Cheng H, Yu Q, Abdalhi MA, Li F, Qi Z, Zhu T. RZWQM2 simulated drip fertigation management to improve water and nitrogen use efficiency of maize in a solar greenhouse. Agriculture. 2022;12(5):672. https://doi.org/10.3390/agriculture12050672
  63. 63. Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 2019;289:110270. https://doi.org/10.1016/j.plantsci.2019.110270
  64. 64. Li Z, Zou H, Lai Z, Zhang F, Fan J. Optimal drip fertigation regimes improved soil micro-environment, root growth and grain yield of spring maize in arid northwest china. Agronomy. 2023;13(1):227. https://doi.org/10.3390/agronomy13010227
  65. 65. Wu Y, Zhang J, Yan S, Si W, Liu R, Yang J. Changing drip fertigation strategy to decrease greenhouse agroecosystem soil nitrate residue and improve tomato production in Northwest of China. J Soil Sci Plant Nutr. 2024;24(3):4565-80. https://doi.org/10.1007/s42729-024-01856-0
  66. 66. Azad N, Behmanesh J, Rezaverdinejad V, Abbasi F, Navabian M. Evaluation of fertigation management impacts of surface drip irrigation on reducing nitrate leaching using numerical modeling. Environ Sci Pollut Res Int. 2019;26:36499-514. https://doi.org/10.1007/s11356-019-06699-2
  67. 67. Messiga AJ, Dyck K, Ronda K, van Baar K, Haak D, Yu S. Nutrients leaching in response to long-term fertigation and broadcast nitrogen in blueberry production. Plants. 2020;9(11):1530. https://doi.org/10.3390/plants9111530
  68. 68. Lei H, Yu J, Zang M, Pan H, Liu X, Zhang Z, et al. Effects of water-fertilizer-air-coupling drip irrigation on soil health status: soil aeration, enzyme activities and microbial biomass. Agronomy. 2022;12(11):2674. https://doi.org/10.3390/agronomy12112674
  69. 69. Timofeeva AM, Galyamova MR, Sedykh SE. Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production and other biological activities. Plants. 2023;12(24):4074. https://doi.org/10.3390/plants12244074
  70. 70. Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems. Dordrecht, Netherlands: Springer Science & Business Media. 2007. https://doi.org/10.1007/978-3-540-68027-7
  71. 71. Bhattarai S, Midmore D, Pendergast L. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrig Sci. 2008;26:439-50. https://doi.org/10.1007/s00271-008-0112-5
  72. 72. Bar-Yosef B. Advances in fertigation. Adv Agron. 1999;65:1-77. https://doi.org/10.1016/S0065-2113(08)60910-4
  73. 73. Xing Y, Zhang X, Wang X. Enhancing soil health and crop yields through water-fertilizer coupling technology. Front Sustain Food Syst. 2024;8:1494819. https://doi.org/10.3389/fsufs.2024.1494819
  74. 74. García L, Parra L, Jimenez JM, Lloret J, Lorenz P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors (Basel). 2020;20(4):1042. https://doi.org/10.3390/s20041042
  75. 75. Xie A, Zhou Q, Fu L, Zhan L, Wu W. From lab to field: advancements and applications of on-the-go soil sensors for real-time monitoring. Eurasian Soil Sci. 2024;57(10):1730-45. https://doi.org/10.1134/S1064229324601124
  76. 76. Ahmad U, Alvino A, Marino S. Solar fertigation: A sustainable and smart IoT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy. 2022;12(5):1012. https://doi.org/10.3390/agronomy12051012
  77. 77. Kumar C, Verma SB, Singh AK. Sustainable management of soil salinity with special reference to smart fertigation systems. Proc Natl Acad Sci India Sect B Biol Sci. 2024;94(4):705-18. https://doi.org/10.1007/s40011-023-01522-y
  78. 78. Vinod Kumar S, Singh C, Rao KR, Rajwade YA, Kumar M, Jawaharlal D. IoT-based smart drip irrigation scheduling and wireless monitoring of microclimate in sweet corn crop under plastic mulching. Irrig Sci. 2024:1-20. https://doi.org/10.1007/s00271-024-00945-3
  79. 79. Yankelzon I, Schilling L, Butterbach-Bahl K, Gasche R, Han J, Hartl L. Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method. Biol Fertil Soils. 2024:1-18. https://doi.org/10.1007/s00374-024-01801-4
  80. 80. Cui J, Mak-Mensah E, Wang J, Li Q, Huang L, Song S. Interactive effects of drip irrigation and nitrogen fertilization on wheat and maize yield: A meta-analysis. J Soil Sci Plant Nutr. 2024;24(2):1547-59. https://doi.org/10.1007/s42729-024-01650-y
  81. 81. Shi K, Zhangzhong L, Han F, Zhang S, Guo R, Yao X. Reducing emitter clogging in drip fertigation systems by magnetization technology. Sustainability. 2023;15(4):3712. https://doi.org/10.3390/su15043712
  82. 82. Zhang J, Xiao YS, Wu Y, Jia F, Li S, Zhou B. Effects of microorganisms on clogging process and clogging substances accumulation of drip irrigation emitters using the high-sediment water sources. Irrig Sci. 2022;40(6):845-56. https://doi.org/10.1007/s00271-022-00828-5
  83. 83. Shi K, Lu T, Zheng W, Zhang X, Zhangzhong L. A review of the category, mechanism and controlling methods of chemical clogging in drip irrigation system. Agriculture. 2022;12(2):202. https://doi.org/10.3390/agriculture12020202
  84. 84. Alcon F, Navarro N, de-Miguel MD, Balbo AL. Drip irrigation technology: analysis of adoption and diffusion processes. In: Sarkar A, Sensarma S, vanLoon G, editors. Sustainable solutions for food security. Cham, Switzerland: Springer. 2019. p. 269-85. https://doi.org/10.1007/978-3-319-77878-5_14
  85. 85. Ravikumar V, editor. Maintenance and operation of drip irrigation systems. In: Sprinkler and drip irrigation: theory and practice. Singapore: Springer. 2022. p. 391-413. https://doi.org/10.1007/978-981-19-2775-1_14
  86. 86. Qiu X, Wang J, Wang H, Wang C, Sun Y, Li G. Elimination of clogging of a biogas slurry drip irrigation system using the optimal acid and chlorine addition mode. Agriculture. 2022;12(6):777. https://doi.org/10.3390/agriculture12060777
  87. 87. Arunadevi K, Kumar M, Singh M, Khanna M, Mishra AK, Prajapati VK. Drip Irrigation: Concept, Design and IoT-Based Automation. In: Yasheshwar, Mishra AK, Kumar M, editors. Recent advancements in sustainable agricultural practices. Singapore: Springer. 2024. p. 97-111. https://doi.org/10.1007/978-981-97-2155-9_5
  88. 88. Nsoh B, Katimbo A, Guo H, Heeren DM, Nakabuye HN, Qiao X. Internet of things-based automated solutions utilizing machine learning for smart and real-time irrigation management: A review. Sensors. 2024;24(23):7480. https://doi.org/10.3390/s24237480
  89. 89. Ogungbuyi MG, Mohammed C, Fischer AM, Turner D, Whitehead J, Harrison MT. Integration of drone and satellite imagery improves agricultural management agility. Remote Sens. 2024;16(24):4688. https://doi.org/10.3390/rs16244688
  90. 90. Jani KA, Chaubey NK. SMAIoT-ferti: A smart cropland monitoring and optimal fertigation IoT system. Int J Inf Technol. 2024;16(4):2253-61. https://doi.org/10.1007/s41870-024-01731-2
  91. 91. Suchithra S, Kothai PS, Maniarasan SK. Reduction of scale formation in irrigation nozzles using natural coagulants-An experimental study report. In: Mavinkere Rangappa S, Palaniappan SK, Siengchin S, editors. Proceedings of the international conference on eco-friendly fibers and polymeric materials. EFPM 2024. Singapore: Springer. 2024, p. 691-9. https://doi.org/10.1007/978-981-97-7071-7_48

Downloads

Download data is not yet available.