Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Municipal sludge as soil amendment for flower crop growth: Insights into the current situation and potential challenges

DOI
https://doi.org/10.14719/pst.10305
Submitted
27 June 2025
Published
29-10-2025

Abstract

The utilization of treated municipal sludge or biosolids, as an organic soil enhancer has garnered significant interest for its potential to enhance soil quality and plant growth. The use of treated sludge as an amendment is seen as a viable method for waste disposal and soil improvement. The impact of sludge applications on soil properties, microbiome and flower crop growth and yield depends on factors such as sludge composition, application rates and specific plant species. Safety concerns regarding contaminants such as heavy metals, pathogens and organic pollutants have raised questions about practical application, especially in flower crop cultivation. Despite its potential benefits, challenges like insufficient infrastructure, regulatory awareness and risks of improper handling hinder widespread adoption of municipal sludge as a flower crop soil amendment. Yet, ensuring proper treatment processes and adherence to regulatory guidelines is vital to mitigate potential risks. This review provides an overview of the current status and potential challenges related to the usage of municipal sludge as a soil amendment for flower crops. Addressing these challenges necessitates enhanced sludge management, infrastructure investment and sustainable integrated strategies. Continuous research is crucial to optimize treatment, create value-added products and understand long-term impacts of sludge on soil and environmental sustainability in flower crops.

References

  1. 1. Tyagi VK, Lo S-L. Sludge: A waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev. 2013;25:708–28. https://doi.org/10.1016/j.rser.2013.05.029
  2. 2. Kelessidis A, Stasinakis AS. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012;32(6):1186–95. https://doi.org/10.1016/j.wasman.2012.01.012
  3. 3. United Nations DESA. World urbanization prospects 2018: Highlights (ST/ESA/SER.A/421). New York: Department of Economic and Social Affairs, Population Division; 2019. https://population.un.org/wup/assets/WUP2018-Report.pdf
  4. 4. Di Costanzo N, Cesaro A, Di Capua F, Esposito G. Exploiting the nutrient potential of anaerobically digested sewage sludge: A review. Energies. 2021;14(23):8149. https://doi.org/10.3390/en14238149
  5. 5. Weber J, Karczewska A, Drozd J, Licznar M, Licznar S, Jamroz E, et al. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol Biochem. 2007;39(6):1294–302. https://doi.org/10.1016/j.soilbio.2006.12.005
  6. 6. Lamastra L, Suciu NA, Trevisan M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem Biol Technol Agric. 2018;5(1):1–6. https://doi.org/10.1186/s40538-018-0122-3
  7. 7. Antille DL, Sakrabani R, Tyrrel SF, Le MS, Godwin RJ. Characterization of organomineral fertilizers derived from nutrient-enriched biosolids granules. Appl Environ Soil Sci. 2013;2013:694597. https://doi.org/10.1155/2013/694597
  8. 8. Rigby H, Smith S. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Manag. 2013;33(12):2641–52. https://doi.org/10.1016/j.wasman.2013.08.005
  9. 9. Majsztrik J, Owen JS. Improving nutrient management in the cultivation of ornamental plants in greenhouse, container and field production. In: Achieving sustainable cultivation of ornamental plants. Burleigh Dodds Sci Publ; 2020. p. 279–302. https://doi.org/10.1201/9781003047766
  10. 10. Succop CE, Newman SE. Organic fertilization of fresh market sweet basil in a greenhouse. Hort Technology. 2004;14(2):235–9. https://doi.org/10.21273/HORTTECH.14.2.0235
  11. 11. Byczynski L. The flower farmer: An organic grower’s guide to raising and selling cut flowers. Chelsea Green Publ; 2008.
  12. 12. Singh R, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008;28(2):347–58. https://doi.org/10.1016/j.wasman.2006.12.010
  13. 13. UN Water. Wastewater management: a UN-water analytical brief. New York; 2015.
  14. 14. CPCB. Inventorization of sewage treatment plants. Central Pollution Control Board, New Delhi; 2015.
  15. 15. Kamyotra J, Bhardwaj R. Municipal wastewater management in India. India Infrastructure Report. 2011;299.
  16. 16. Shende A, Pophali G. Sewage and faecal sludge management: revisiting discharge standards in India. Int J Environ Sci Technol. 2023;20(11):12793–806. https://doi.org/10.1007/s13762-022-04688-6
  17. 17. Bhave P, Sadhwani K. Solid waste management legislation: A review. Envtl Pol'y & L. 2016;46:168.
  18. 18. Hung Y-T, Wang LK, Shammas NK. Handbook of environment and waste management: air and water pollution control. World Scientific; 2012.
  19. 19. Singh V, Phuleria HC, Chandel MK. Unlocking the nutrient value of sewage sludge. Water Environ J. 2022;36(2):321–31. https://doi.org/10.1111/wej.12739
  20. 20. Jamali M, Kazi T, Arain M, Afridi H, Jalbani N, Memon A. Heavy metal contents of vegetables grown in soil irrigated with mixtures of wastewater and sewage sludge in Pakistan using ultrasonic-assisted pseudo-digestion. J Agron Crop Sci. 2007;193(3):218–28. https://doi.org/10.1111/j.1439-037X.2007.00261.x
  21. 21. Zielińska A, Oleszczuk P, Charmas B, Skubiszewska-Zięba J, Pasieczna-Patkowska S. Effect of sewage sludge properties on the biochar characteristic. J Anal Appl Pyrolysis. 2015;112:201–13. https://doi.org/10.1016/j.jaap.2015.01.025
  22. 22. Sharma B, Sarkar A, Singh P, Singh RP. Agricultural utilization of biosolids: a review on potential effects on soil and plant growth. Waste Manag. 2017;64:117–32. https://doi.org/10.1016/j.wasman.2017.03.002
  23. 23. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009;35(1):142–56. https://doi.org/10.1016/j.envint.2008.06.009
  24. 24. Mantovi P, Baldoni G, Toderi G. Reuse of liquid, dewatered and composted sewage sludge on agricultural land: Effects of long-term application on soil and crop. Water Res. 2005;39(2–3):289–96. https://doi.org/10.1016/j.watres.2004.10.003
  25. 25. Zhang Y, Banks CJ, Heaven S. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol. 2012;114:168–78. https://doi.org/10.1016/j.biortech.2012.03.040
  26. 26. U.S. Environmental Protection Agency. Environmental regulations and technology: Control of pathogens and vector attraction in sewage sludge. Cincinnati (OH): USEPA; 2003.
  27. 27. Nkoa R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron Sustain Dev. 2014;34:473–92. https://doi.org/10.1007/s13593-013-0196-z
  28. 28. Guo L, Wu G, Li Y, Li C, Liu W, Meng J, et al. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in eastern China. Soil Tillage Res. 2016;158:1–9. https://doi.org/10.1016/j.still.2015.10.010
  29. 29. Subramanian S, Kumar N, Murthy S, Novak JT. Effect of anaerobic digestion and anaerobic/aerobic digestion processes on sludge dewatering. J Residuals Sci Technol. 2007;4:17–23.
  30. 30. Cheraghi M, Motesharezadeh B, Alikhani HA, Mousavi SM. Optimal management of plant nutrition in tomato (Lycopersicon esculentum Mill.) by using biologic, organic and inorganic fertilizers. J Plant Nutr. 2023;46(8):1560–79. https://doi.org/10.1080/01904167.2022.2092511
  31. 31. Lang NL, Smith SR. Influence of soil type, moisture content and biosolids application on the fate of Escherichia coli in agricultural soil under controlled laboratory conditions. J Appl Microbiol. 2007;103(6):2122–31. https://doi.org/10.1111/j.1365-2672.2007.03490.x
  32. 32. Moldes A, Cendon Y, Barral MT. Evaluation of municipal solid waste compost as a plant growing media component by applying mixture design. Bioresour Technol. 2007;98(16):3069–75. https://doi.org/10.1016/j.biortech.2006.10.021
  33. 33. Hong J, Hong J, Otaki M, Jolliet O. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag. 2009;29(2):696–703. https://doi.org/10.1016/j.wasman.2008.03.026
  34. 34. Lowman A, McDonald MA, Wing S, Muhammad N. Land application of treated sewage sludge: community health and environmental justice. Environ Health Perspect. 2013;121(5):537–42. https://doi.org/10.1289/ehp.1205470
  35. 35. Liang Y, Si J, Nikolic M, Peng Y, Chen W, Jiang Y. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem. 2005;37(6):1185–95. https://doi.org/10.1016/j.soilbio.2004.11.017
  36. 36. Mabrouk O, Hamdi H, Sayadi S, Al-Ghouti MA, Abu-Dieyeh MH, Zouari N. Reuse of sludge as organic soil amendment: insights into the current situation and potential challenges. Sustainability. 2023;15(8):6773. https://doi.org/10.3390/su15086773
  37. 37. Tsadilas C, Mitsios I, Golia E. Influence of biosolids application on some soil physical properties. Commun Soil Sci Plant Anal. 2005;36(4–6):709–16. https://doi.org/10.1081/CSS-200043350
  38. 38. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34(6):755–81. https://doi.org/10.1016/j.pecs.2008.06.002
  39. 39. Tchobanoglous G, Burton F, Stensel HD. Wastewater engineering: Treatment and reuse. Am Water Works Assoc J. 2003;95(5):201.
  40. 40. Haug RT. The practical handbook of compost engineering. Routledge; 2018. https://doi.org/10.1201/9780203736234
  41. 41. Bennamoun L, Arlabosse P, Léonard A. Review on fundamental aspects of the application of drying process to wastewater sludge. Renew Sustain Energy Rev. 2013;28:29–43. https://doi.org/10.1016/j.rser.2013.07.043
  42. 42. Lu Q, He ZL, Stoffella PJ. Land application of biosolids in the USA: A review. Appl Environ Soil Sci. 2012;2012:201462. https://doi.org/10.1155/2012/201462
  43. 43. Pan M, Yau PC, Lee KC, Zhang H, Lee V, Lai CY, et al. Nutrient accumulation and environmental risks of biosolids and different fertilizers on horticultural plants. Water Air Soil Pollut. 2021;232(12):480. https://doi.org/10.1007/s11270-021-05424-5
  44. 44. Chaudri AM, Allain CM, Badawy SH, Adams ML, McGrath SP, Chambers BJ. Cadmium content of wheat grain from a long-term field experiment with sewage sludge. J Environ Qual. 2001;30(5):1575–80. https://doi.org/10.2134/jeq2001.3051575x
  45. 45. Gómez-Silván C, Andersen GL, Calvo C, Aranda E. Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover. Bioresour Technol. 2020;298:122550. https://doi.org/10.1016/j.biortech.2019.122550
  46. 46. Major N, Schierstaedt J, Jechalke S, Nesme J, Ban SG, Černe M, et al. Composted sewage sludge influences the microbiome and persistence of human pathogens in soil. Microorganisms. 2020;8(7):1020. https://doi.org/10.3390/microorganisms8071020
  47. 47. Viau E, Peccia J. Survey of wastewater indicators and human pathogen genomes in biosolids produced by class A and class B stabilization treatments. Appl Environ Microbiol. 2009;75(1):164–74. https://doi.org/10.1128/AEM.01331-08
  48. 48. Oun A, Kumar A, Harrigan T, Angelakis A, Xagoraraki I. Effects of biosolids and manure application on microbial water quality in rural areas in the US. Water. 2014;6(12):3701–23. https://doi.org/10.3390/w6123701
  49. 49. Zhang W, Yang P, Yang X, Chen Z, Wang D. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process. Bioresour Technol. 2015;181:247–53. https://doi.org/10.1016/j.biortech.2015.01.003
  50. 50. G El-Alsayed S, M Ismail S. Impact of soil amendments and irrigation water on growth and flowering of Rosa plant grown in sandy soil Rosa hybrida. Alexandria Sci Ex J. 2017;38:626–41. https://doi.org/10.21608/asejaiqjsae.2017.4058
  51. 51. AL-Huqail AA, Kumar P, Abou Fayssal S, Adelodun B, Širić I, Goala M, et al. Sustainable use of sewage sludge for marigold (Tagetes erecta L.) cultivation: Experimental and predictive modeling studies on heavy metal accumulation. Horticulturae. 2023;9(4):447. https://doi.org/10.3390/horticulturae9040447
  52. 52. Dubey R, Simrat-Singh, Kukal S, Kalsi H. Evaluation of different organic growing media for growth and flowering of petunia. Comm Soil Sci Plant Anal. 2013;44(12):1777–85. https://doi.org/10.1080/00103624.2013.790398
  53. 53. Oleszczuk P. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety. 2008;69(3):496–505. https://doi.org/10.1016/j.ecoenv.2007.04.006
  54. 54. Ali IA, Hassan SE, Abdelhafez AA, Hewidy M, Nasser MA, Saudy HS, et al. Modifying the growing media and biostimulants supply for healthy gerbera (Gerbera jamesonii) flowers. Gesunde Pflanzen. 2023:1–9. https://doi.org/10.1007/s10343-023-00943-z
  55. 55. Leoni B, Loconsole D, Cristiano G, De Lucia B. Comparison between chemical fertilization and integrated nutrient management: Yield, quality, N, and P contents in Dendranthema grandiflorum (Ramat.) Kitam. cultivars. Agronomy. 2019;9(4):202. https://doi.org/10.3390/agronomy9040202
  56. 56. Nair A, Ngouajio M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl Soil Ecol. 2012;58:45–55. https://doi.org/10.1016/j.apsoil.2012.03.008
  57. 57. Hossain MK, Strezov V, Chan KY, Nelson PF. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere. 2010;78(9):1167–71. https://doi.org/10.1016/j.chemosphere.2010.01.009
  58. 58. Singh R, Agrawal M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxic Environ Safety. 2010;73(4):632–41. https://doi.org/10.1016/j.ecoenv.2010.01.020
  59. 59. Cieślik BM, Namieśnik J, Konieczka P. Review of sewage sludge management: Standards, regulations and analytical methods. J Cleaner Prod. 2015;90:1–15. https://doi.org/10.1016/j.jclepro.2014.11.031
  60. 60. Sullivan D, Bary A, Nartea T, Myrhe E, Cogger C, Fransen S. Nitrogen availability seven years after a high-rate food waste compost application. Compost Sci Utiliz. 2003;11(3):265–75. https://doi.org/10.1080/1065657X.2003.10702133
  61. 61. Valdez-Perez M, Fernandez-Luqueno F, Franco-Hernandez O, Cotera LF, Dendooven L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Sci Horti. 2011;128(4):380–7. https://doi.org/10.1016/j.scienta.2011.01.016
  62. 62. Ahmed HK, Fawy HA, Abdel-Hady E. Study of sewage sludge use in agriculture and its effect on plant and soil. Agric Biol J North Am. 2010;1(5):1044–9. https://doi.org/10.5251/abjna.2010.1.5.1044.1049
  63. 63. Naderi R, Ghadiri H. Urban waste compost, manure and nitrogen fertilizer effects on the initial growth of corn (Zea mays L.). 2010;15:159-65.
  64. 64. Hargreaves J, Adl M, Warman P. A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ. 2008;123(1–3):1–14. https://doi.org/10.1016/j.agee.2007.07.004
  65. 65. Larney FJ, Angers DA. The role of organic amendments in soil reclamation: A review. Can J Soil Sci. 2012;92(1):19–38. https://doi.org/10.4141/cjss2010-064
  66. 66. Rusan MJM, Hinnawi S, Rousan L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination. 2007;215(1–3):143–52. https://doi.org/10.1016/j.desal.2006.10.032
  67. 67. Johnston A, Poulton P. The importance of long‐term experiments in agriculture: Their management to ensure continued crop production and soil fertility; The Rothamsted experience. Eur J Soil Sci. 2018;69(1):113–25. https://doi.org/10.1111/ejss.12521
  68. 68. Lou Y, Davis AS, Yannarell AC. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil. Plant Soil. 2016;399:357–71. https://doi.org/10.1007/s11104-015-2698-8
  69. 69. Hargreaves J, Adl MS, Warman PR, Rupasinghe HV. The effects of organic amendments on mineral element uptake and fruit quality of raspberries. Plant Soil. 2008;308:213–26. https://doi.org/10.1007/s11104-008-9621-5
  70. 70. Zmora-Nahum S, Hadar Y, Chen Y. Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biol Biochem. 2007;39(6):1263–76. https://doi.org/10.1016/j.soilbio.2006.12.017
  71. 71. Cuypers A, Remans T, Weyens N, Colpaert J, Vassilev A, Vangronsveld J. Soil-plant relationships of heavy metals and metalloids. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Springer: Dordrecht; 2013. p. 161-93. https://doi.org/10.1007/978-94-007-4470-7_6
  72. 72. Korboulewsky N, Dupouyet S, Bonin G. Environmental risks of applying sewage sludge compost to vineyards: Carbon, heavy metals, nitrogen, and phosphorus accumulation. J Envrion Qual. 2002;31(5):1522–7. https://doi.org/10.2134/jeq2002.1522
  73. 73. Cheng H, Xu W, Liu J, Zhao Q, He Y, Chen G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol Engin. 2007;29(1):96–104. https://doi.org/10.1016/j.ecoleng.2006.08.005
  74. 74. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosph Trans Royal Soc B: Biol Sci. 2013;368(1621):20130122. https://doi.org/10.1098/rstb.2013.0122
  75. 75. Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, et al. Trace elements in the soil-plant interface: Phytoavailability, translocation and phytoremediation - A review. Earth-Sci Rev. 2017;171:621–45. https://doi.org/10.1016/j.earscirev.2017.06.005
  76. 76. Agegnehu G, Bass AM, Nelson PN, Bird MI. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ. 2016;543:295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  77. 77. Montemurro F, Ferri D, Tittarelli F, Canali S, Vitti C. Anaerobic digestate and on-farm compost application: Effects on lettuce (Lactuca sativa L.) crop production and soil properties. Sci Utiliz. 2010;18(3):138–93. https://doi.org/10.1080/1065657X.2010.10736954
  78. 78. Siebielec G, Siebielec S, Lipski D. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. J Cleaner Prod. 2018;187:372–9. https://doi.org/10.1016/j.jclepro.2018.03.245
  79. 79. Gheewala SH. Life cycle assessment (LCA) to evaluate environmental impacts of bioenergy projects. J Sustain Energy Environ. 2011;35(1):35–8.
  80. 80. Yadav A, Gupta R, Garg VK. Organic manure production from cow dung and biogas plant slurry by vermicomposting under field conditions. Int J Recycl Otrg Waste Agric. 2013;2:1–7. https://doi.org/10.1186/2251-7715-2-21
  81. 81. Carbonell G, de Imperial RM, Torrijos M, Delgado M, Rodriguez JA. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere. 2011;85(10):1614–23. https://doi.org/10.1016/j.chemosphere.2011.08.025
  82. 82. Fetene Y, Addis T, Beyene A, Kloos H. Valorisation of solid waste as key opportunity for green city development in the growing urban areas of the developing world. J Envrion Chem Engin. 2018;6(6):7144–51. https://doi.org/10.1016/j.jece.2018.11.023
  83. 83. Vaithyanathan VK, Cabana H. Integrated biotechnology management of biosolids: Sustainable ways to produce value-added products. Front Water. 2021;3:729679. https://doi.org/10.3389/frwa.2021.729679
  84. 84. Capizzi-Banas S, Deloge M, Remy M, Schwartzbrod J. Liming as an advanced treatment for sludge sanitisation: Helminth eggs elimination-Ascaris eggs as model. Water Res. 2004;38(14–15):3251–8. https://doi.org/10.1016/j.watres.2004.04.015
  85. 85. Brown S, Kruger C, Subler S. Greenhouse gas balance for composting operations. J Environ Qual. 2008;37(4):1396–410. https://doi.org/10.2134/jeq2007.0453
  86. 86. Banks CJ, Zhang Y, Jiang Y, Heaven S. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technol. 2012;104:127–35. https://doi.org/10.1016/j.biortech.2011.10.068
  87. 87. Foley J, De Haas D, Hartley K, Lant P. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Res. 2010;44(5):1654–66. https://doi.org/10.1016/j.watres.2009.11.031
  88. 88. Shober AL, Sims JT. Phosphorus restrictions for land application of biosolids: Current status and future trends. J Environ Qual. 2003;32(6):1955–64. https://doi.org/10.2134/jeq2003.1955
  89. 89. Raj D, Antil R. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresource Technol. 2011;102(3):2868–73. https://doi.org/10.1016/j.biortech.2010.10.077
  90. 90. Wasay S, Barrington S, Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals: Soil flushing in columns. Water Air Soil Poll. 2001;127:301–14. https://doi.org/10.1023/A:100525191516
  91. 91. Stoorvogel JJ, Bakkenes M, Temme AJ, Batjes NH, ten Brink BJ. S-World: A global soil map for environmental modelling. Degrad Dev. 2017;28(1):22–33. https://doi.org/10.1002/ldr.2656
  92. 92. Seshadri B, Bolan NS, Naidu R, Wang H, Sajwan K. Clean coal technology combustion products: Properties, agricultural and environmental applications, and risk management. Adv Agron. 2013;119:309–70. https://doi.org/10.1016/B978-0-12-407247-3.00006-8
  93. 93. Wang H, Brown SL, Magesan GN, Slade AH, Quintern M, Clinton PW, et al. Technological options for the management of biosolids. Environ Sci Poll Res Int. 2008;15:308–17. https://doi.org/10.1007/s11356-008-0012-5
  94. 94. Kalogo Y, Monteith H, Eng P. State of Science Report: Energy and Resource Recovery from Sludge. 2012.
  95. 95. Awasthi MK, Sarsaiya S, Patel A, Juneja A, Singh RP, Yan B, et al. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sustain Energy Rev. 2020;127:109876. https://doi.org/10.1016/j.rser.2020.109876
  96. 96. Zaker A, Chen Z, Wang X, Zhang Q. Microwave-assisted pyrolysis of sewage sludge: A review. Process Technol. 2019;187:38–104. https://doi.org/10.1016/j.fuproc.2018.12.011
  97. 97. Antil RS, Raj D. Integrated nutrient management for sustainable crop production and improving soil health. Nutrient Dynamics for Sustainable Crop Production. Springer: Singapore; 2020. p. 67-101. https://doi.org/10.1007/978-981-13-8660-2_3
  98. 98. Radics RI, Dasmohapatra S, Kelley SS. Public perception of bioenergy in North Carolina and Tennessee. Energy Sustain Soc. 2016;6(1):1–11. https://doi.org/10.1186/s13705-016-0081-0
  99. 99. Charron DF. Ecosystem approaches to health for a global sustainability agenda. EcoHealth. 2012;9:256–66. https://doi.org/10.1007/s10393-012-0791-5
  100. 100. Zolfaghary P, Zakerinia M, Kazemi H. A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS). Agric Water Manag. 2021;243:106490. https://doi.org/10.1016/j.agwat.2020.106490

Downloads

Download data is not yet available.