Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Biodegradation pathways of paper mill waste: Microbial strategies and environmental implications

DOI
https://doi.org/10.14719/pst.10317
Submitted
27 June 2025
Published
25-09-2025

Abstract

The pulp and paper industry generates huge amounts of solid and semi-solid waste, primarily in the form of sludge and fibrous residues, posing significant environmental and disposal challenges. This review provides a detailed overview of paper mill waste, emphasizing its physicochemical characteristics and the central role of microbial communities in degradation. Microorganisms, through diverse metabolic and enzymatic pathways, drive the breakdown of lignocellulosic materials such as cellulose, hemicellulose and lignin. Both abiotic and microbial degradation mechanisms are examined, with attention to key environmental factors- including temperature, pH, moisture and substrate composition- that influence the efficiency of biodegradation. The review also explores the advantages and limitations of microbial methods, highlighting the generation of valuable byproducts with potential environmental and commercial benefits. Further, it addresses the ecological and human health risks associated with improper paper waste disposal. This review concludes by evaluating current waste management and recycling approaches, while emphasizing strategies to enhance the efficiency and sustainability of paper waste biodegradation. Rooted in circular economy principles, it highlights the emerging role of microbial biotechnology in transforming paper mill waste into a resource of environmental and economic value and outlines key directions for future research.

References

  1. 1. Agrawal M, Verma P, Shahi VK. Biodegradation of lignin by white rot fungi: Recent advances. Biotechnol Adv. 2020;39:107451. https://doi.org/10.1016/j.biotechadv.2008.11.001
  2. 2. Ali M, Sreekrishnan TR. Aquatic toxicity from pulp and paper mill effluents: A review. Adv Environ Res. 2001;5(2):175-96. https://doi.org/10.1016/S1093-0191(00)00055-1
  3. 3. Burns TR. The sustainability revolution: A societal paradigm shift. Sustainability. 2012;4(6):1118-34. https://doi.org/10.3390/su4061118
  4. 4. Bajpai P. Management of pulp and paper mill waste. Cham: Springer. 2015. https://doi.org/10.1007/978-3-319-11788-1
  5. 5. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresour Technol. 2009;100(22):5444-53. https://doi.org/10.1016/j.biortech.2008.11.027
  6. 6. Fujita M, Ike M, Hashimoto S. Feasibility of wastewater treatment using genetically engineered microorganisms. Water Res. 1991;25(8):979-84. https://doi.org/10.1016/0043-1354(91)90147-I
  7. 7. Heimberger SA, Blevins DS, Bostwick JH, Donnini GP. Kraft bleach mill plant effluents: Recent developments aimed at decreasing their environmental impact. Part 2. Tappi J. 1988;71(11):69-78.
  8. 8. Brown A, Kumar V, Patel R. Enzymatic hydrolysis of lignocellulosic waste for sustainable bioresource conversion. J Environ Biotechnol. 2023;45(2):203-14.
  9. 9. Buchanan RA, Dagnall HJ, Robertson P. The effect of light on paper: A review of the influence of visible and ultraviolet light on the ageing of modern papers. Restaurator. 1991;12(1):1-36.
  10. 10. Central Pollution Control Board (CPCB). Comprehensive industry document on pulp and paper industry: Guidelines for effluent and waste management. New Delhi: Ministry of Environment, Forest and Climate Change, Government of India. 2016.
  11. 11. Central Pollution Control Board (CPCB). Water quality criteria and discharge norms for industrial effluents. New Delhi: Ministry of Environment, Forest and Climate Change, Government of India. 2019.
  12. 12. Chandra R, Bharagava RN, Rai V. Fungal treatment of industrial wastewaters: a sustainable approach. In: Bharagava RN, Chandra R, editors. Environmental pollutants and their bioremediation approaches. Boca Raton: CRC Press. 2019. p. 15-34.
  13. 13. Chatterjee S, Mukherjee S, Banerjee S. Environmental impacts of pulp and paper industry and emerging eco-friendly technologies. J Clean Prod. 2022;370:133444. https://doi.org/10.1016/j.jclepro.2022.133444
  14. 14. Chen H, Liu L, Ma X. Effects of lignin content on enzymatic hydrolysis of cellulose. BioResources. 2017;12(1):1394-404.
  15. 15. Christensen TH, Gentil EC, Boldrin A, Larsen AW, Weidema BP, Hauschild MP. C balance, carbon dioxide emissions and global warming potentials in LCA modelling of waste management systems. Waste Manag Res. 2009;27(8):707-15. https://doi.org/10.1177/0734242X09346702
  16. 16. Clark TA, Verma S, Das P. Environmental regulation of microbial degradation in organic waste management. Waste Manag. 2027; 159:312-24.
  17. 17. Das R, Reddy KS. Assessment of energy consumption and greenhouse gas emissions in paper production processes. Energy Rep. 2021;7:3121-32.
  18. 18. Epstein E. The science of composting. Boca Raton: CRC Press. 1997.
  19. 19. Garcia Soto MJ, López MJ, Moreno J. Microbial dynamics and enzymatic activity during composting of lignocellulosic wastes. Bioresour Technol. 2021;320:124365.
  20. 20. Gomes J, Bandeira M, Lopes RT, Duarte A. Role of pH in microbial degradation of organic waste: Implications for biofertilizer production. J Environ Chem Eng. 2021;9(5):105918.
  21. 21. Hatakka A. Biodegradation of lignin. In: Hofrichter M, Steinbüchel A, editors. Biopolymers: Biology, chemistry, biotechnology, applications. Vol 1. Weinheim: Wiley-VCH. 2005. p. 129-80.
  22. 22. Hon DNS, Shiraishi N. Wood and cellulosic chemistry. 2nd ed. New York: Marcel Dekker. 2001.
  23. 23. Hubbe MA, Lucia LA. The what, why and how of paper recycling. Bio Resources. 2007;2(4):739-88.
  24. 24. Hubbe MA, Venditti RA, Rojas OJ. What happens to cellulosic fibers during recycling? Prog Paper Recycl. 2007;16(3):16-25.
  25. 25. Iqbal M, Irshad M, Khan Q. Challenges in microbial degradation of lignin-rich paper wastes: A critical review. Chemosphere. 2023;330:137400.
  26. 26. Johnson LM, Chen Y, Smith DR. Biochemical pathways in microbial lignin depolymerization: A systems biology approach. Biotechnol Adv. 2024;67:108031.
  27. 27. Jones SM, Joshi M, Ma J. Influence of temperature and moisture on compost microbial community structure and organic matter decomposition. Waste Manag. 2020;107:144-52.
  28. 28. Joshi R, Bhat MA, Tiwari S. Global deforestation and its implications: role of paper industries. Environ Monit Assess. 2022;194(3):184. https://doi.org/10.1007/s10661-022-09829-5
  29. 29. Kim JY, Lee JH, Park S. Influence of carbon-to-nitrogen ratio on microbial degradation of wastepaper: Composting approach. J Mater Cycles Waste Manag. 2019;21(4):1125-33.
  30. 30. Kumari R, Singh A, Thakur IS. Characterization and valorization of paper mill sludge: Environmental and sustainable approaches. Waste Manag. 2022;138:165-77. https://doi.org/10.1016/j.wasman.2022.05.021
  31. 31. Li F, Wu S, Zhang Y. Effects of moisture content on microbial community structure and composting performance of paper waste. Sci Total Environ. 2020;703:134985.
  32. 32. Lin J, Ye Z, Liu D. Nutrient discharge from paper industry wastewater and its impact on aquatic ecosystems. Environ Poll. 2000;109(1):1-7.
  33. 33. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506-77. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  34. 34. Mehta CM, Sharma R, Khanna DR. A review on the treatment of pulp and paper industry effluents. Environ Technol Innov. 2021;22:101516. https://doi.org/10.1016/j.eti.2021.101516
  35. 35. Mishra A, Verma A, Thakur IS. Microbial consortia for biodegradation of lignocellulosic waste: An emerging biotechnological solution. Environ Technol Innov. 2021;24:101871.
  36. 36. Mohan G, Ramasamy EV, Thomas M. A comprehensive review on paper industry: Sustainable production and circular economy approaches. Resour Conserv Recycl. 2023;189:106759. https://doi.org/10.1016/j.resconrec.2023.106759
  37. 37. Monte MC, Fuente E, Blanco A, Negro C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009;29(1):293-308. https://doi.org/10.1016/j.wasman.2008.02.014
  38. 38. Nayak R, Patel RM, Sharma N. Growth and trends of the Indian paper industry: A sectoral analysis. Indian J Ind Econ Dev. 2021;17(1):34-42.
  39. 39. Patel S, Bhattacharya S, Roy S. Dynamics and prospects of India’s pulp and paper industry. Asian J Manag. 2020;11(2):215-22. https://doi.org/10.5958/2321-5763.2020.00127
  40. 40. Pivnenko K, Granby K, Eriksson E, Astrup TF. Quantification of chemical contaminants in wastepaper for recycling. Waste Manag. 2015;45:134-42. https://doi.org/10.1016/j.wasman.2016.03.008
  41. 41. Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater a review. Sci Total Environ. 2004;333(1-3):37-58. https://doi.org/10.1016/j.scitotenv.2004.04.023
  42. 42. Prasad DY, Joyce TW. Odour emissions from pulp and paper mill sludge: A case study. Water Sci Technol. 2000;41(1):17-24.
  43. 43. Rao NM, Verma S, Sharma M. Valorisation of paper mill sludge via thermochemical pathways: A review on energy recovery and biochar production. Renew Sustain Energy Rev. 2023;176:113203. https://doi.org/10.1016/j.rser.2023.113203
  44. 44. Ravalason H, Herpoël Gimbert I, Record E, Herpoël G. Lignocellulolytic enzymes of microbial origin for bioconversion of lignocellulosic biomass. In: Kumar D, editor. Microbial diversity, interactions and applications. Cham: Springer. 2019. p. 45-67.
  45. 45. Rousu P, Hytönen E. Papermaking potential of fines from recovered paper. Appita J. 2007;60(3):224-29.
  46. 46. Roy SB, Hynes RK. Heavy metal content in pulp and paper mill sludge and its impact on aquatic biota. Environ Monit Assess. 2009;149(1-4):75-84.
  47. 47. Ryckeboer J, Mergaert J, Vaes K, Klammer S, de Clercq D, Coosemans J, et.al. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol. 2003;53(4):349-410.
  48. 48. Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27(2):185-94. https://doi.org/10.1016/j.biotechadv.2008.11.001
  49. 49. Santos A, Bustamante MA, Calero J, Moral R. Thermophilic composting: A key process for bioresource recovery. Waste Manag. 2019;84:45-53.
  50. 50. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium GR. Bioresour Technol. 2010;101(6):1989-97. https://doi.org/10.1016/j.biortech.2009.10.021
  51. 51. Sharma A, Kaur G. The shifting demand dynamics in the global paper industry: Impact of digital transformation. Glob Bus Rev. 2022;23(5):1021-37. https://doi.org/10.1177/09721509221085712
  52. 52. Sharma B, Dangi AK, Shukla P. Contemporary enzyme-based technologies for bioremediation: A review. J Environ Manag. 2018; 210:10-22. https://doi.org/10.1016/j.jenvman.2017.12.075
  53. 53. Sharma S, Rawat PS. Forest exploitation for pulp and paper production: An ecological concern. Int J Ecol Environ Sci. 2020;46(2):183-9.
  54. 54. Sharygin LM, Orlova TA, Alekseeva AN. Photodegradation of cellulose under UV radiation. Russ J Appl Chem. 2017;90(10):1615-20.
  55. 55. Singh A, Sharma R. Microbial degradation of lignocellulosic biomass: Mechanisms and potential applications. Int J Environ Sci Technol. 2020;17(9):6111-26.
  56. 56. Singh R, Kaur R, Pathak A. Microbial degradation of lignocellulosic materials and its impact on waste management. Waste Biomass Valorization. 2022;13(1):111-24.
  57. 57. Singh R, Menon S. Biochar from industrial residues: Potential for sustainable agriculture. Environ Nanotechnol Monit Manag. 2021;15:100439.
  58. 58. Singhal A, Thakur IS. Colour removal from pulp and paper mill effluent using Aspergillus niger. J Sci Ind Res. 2009;68:157-61.
  59. 59. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol. 2013;53(6-7):427-39. https://doi.org/10.1016/j.enzmictec.2013.07.006
  60. 60. Singhopadhyay A, Bhowmik A, Das S. Toxicological impacts of residual chemicals from paper industry waste on microbial degradation efficiency. Environ Sci Pollut Res. 2023;30:34211-25.
  61. 61. Smith AL, Skerlos SJ, Raskin L. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment. Water Res. 2018;145:482-91.
  62. 62. Sundar K, Elango R, Baskar K. Utilization of paper sludge and biochar as sustainable substrates for soilless cultivation: A critical review. Agric Res. 2023;12:402-14.
  63. 63. Suraj S, Khan A. Air pollutants from pulp and paper industry: Sources and control technologies. J Environ Manag. 2018;223:759-68. https://doi.org/10.1016/j.jenvman.2018.06.052
  64. 64. Taylor ME, Singh P, Rojas L. Microbial ecology of waste biodegradation: cooperation, competition and community dynamics. Appl Microbial Biotechnol. 2026;110(4):1023-39.
  65. 65. Tchobanoglous G, Theisen H, Vigil S. Integrated solid waste management: engineering principles and management issues. New York: McGraw Hill. 1993.
  66. 66. Thompson G, Swain J, Kay M, Forster CF. The treatment of pulp and paper mill effluent: A review. Bioresour Technol. 2001;77(3):275-86. https://doi.org/10.1016/S0960-8524(00)00060-2
  67. 67. Tuomela M, Vikman M, Hatakka A, Itävaara M. Biodegradation of lignin in a compost environment: A review. Bioresour Technol. 2000;72(2):169-83. https://doi.org/10.1016/S0960-8524(99)00104-2
  68. 68. Vidal G, Diez MC, Mora ML. Influence of wood species on the characteristics of kraft mill sludge. Bioresour Technol. 2000;74(2):125-31.
  69. 69. Wang J, Zhang D, Zhang L, Liu H. Effect of additives and coatings on the biodegradability of paper-based products. Environ Sci Pollut Res Int. 2020;27:36805-14. https://doi.org/10.1007/s11356-020-09675-7
  70. 70. Wang X, Zhang Y. Acid hydrolysis and degradation behavior of cellulose fibers: A review. Carbohydr Polym. 2017;173:353-66. https://doi.org10.1016/j.carbpol.2017.05.057
  71. 71. White CR, Ghosh A, Lin J. Adaptive feedback mechanisms in microbial consortia for lignocellulose degradation. Front Microbial. 2028;19:198421.
  72. 72. Wu S, Li F, Zhang Y. Biodegradation of organic waste under aerobic and anaerobic conditions: Comparative insights. Waste Manag. 2021;120:359-67.
  73. 73. Wu S, Li F, Zhang Y. Environmental risks of microbial activity in landfill waste: Leachate generation and gas emissions. Environ Pollut. 2021;269:116106.
  74. 74. Zeng GM, Yu Z, Chen Y, Huang GH, Yu HQ. Effects of moisture content on composting of municipal solid wastes. J Environ Sci. 2010;22(3):472-78. https://doi.org/10.1016/S1001-0742(09)60037-1
  75. 75. Zervos S. Natural and accelerated ageing of cellulose and paper: A literature review. In: Bratasz LM, editor. Durability of paper and writing. Warsaw: Institute for Conservation and Restoration of Cultural Heritage. 2010. p. 15-42.
  76. 76. Zhang Y, Li C, Li J. Enzyme kinetics and stability during thermophilic degradation of paper waste. Process Biochem. 2018;71:87-94.
  77. 77. Zhang Y, Li C, Li J. Influence of pH and enzyme activity during microbial breakdown of lignocellulosic waste. Int Biodeterior Biodegradation. 2018;128:85-91.

Downloads

Download data is not yet available.