Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Utilization of nano-silica from Equisetum sp. - A pathway to sustainable agriculture, economic development and insights into toxicological safety

DOI
https://doi.org/10.14719/pst.10320
Submitted
27 June 2025
Published
24-09-2025

Abstract

This review aims to assess the potential applications of nano-silica derived from Equisetum sp. in agriculture. It aims to implement sustainable farming practices to address environmental and economic challenges. The study investigates the effectiveness of nano-silica as a transformative tool for smart delivery systems in fertilizers, pest control and cleaning pollution. A comprehensive review of literature to synthesize and characterize nano-silica from Equisetum sp. through eco-friendly green synthesis methods. Techniques such as acid and alkali treatments and calcination were highlighted for their efficiency and sustainability. The review also evaluated nano-silica pathways in plants, mechanisms of action and its integration into agricultural technologies. Its application in wastewater treatment demonstrated efficacy in removing heavy metals like cadmium and lead. Additionally, nano-silica based smart delivery systems improved efficiency, minimized environmental impacts and reduced input costs. Economically, nano-silica promotes postharvest preservation and supports the circular economy through recycling agricultural waste. Equisetum-based nano-silica is highly economical and a resource-efficient alternative for the advancement of sustainable agriculture systems by increasing resistance to stress factors in crops, maintaining soil quality and reducing contaminants. However, there are still issues in supplying, safety testing and cost of mass production of these materials. Future research should address these gaps to fully harness nano-silica potential in precision farming and sustainable food systems.

References

  1. 1. Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J Environ Manage. 2020;273:111118. https://doi.org/10.1016/j.jenvman.2020.111118
  2. 2. Hatti V, Raghavendra M, Singh Y, Sharma S, Halli HM, Goud B. Application of nano technology in crop production to enhance resource use efficiency with special reference to soil and water conservation: A review. J Soil Water Conserv. 2020;19(4):375-81. https://doi.org/10.5958/2455-7145.2020.00050.8
  3. 3. Carneiro ME, Magalhães WLE, Bolzon de Muñiz GIB, Nisgoski S, Satyanarayana KG. Preparation and characterization of nano silica from Equisetum arvenses. J Bioprocess Biotechniques. 2015;5(2):205. https://doi.org/10.4172/2155-9821.1000205
  4. 4. Kaufman PB, Bigelow WC, Schmid R, Ghosheh NS. Electron microprobe analysis of silica in epidermal cells of Equisetum. Am J Bot. 1971;58(4):309-16. https://doi.org/10.1002/j.1537-2197.1971.tb14468.x
  5. 5. Sola-Rabada A, Rinck J, Belton DJ, Powell AK, Perry CC. Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a mare’s tale. J Biol Inorg Chem. 2016;21:101-12. https://doi.org/10.1007/s00775-015-1309-6
  6. 6. Mathur P, Roy S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol Biochem. 2020;157:114-27. https://doi.org/10.1016/j.plaphy.2020.08.004
  7. 7. Bayoumi Y, Shalaby T, Taha N, El-Ramady H. Nano-silicon for plant biotic stress: A short communication. Environ Biodivers Soil Secur. 2021;5:267-74. https://doi.org/10.1007/978-981-15-7616-9_26
  8. 8. Grewal S, Boora R, Kumari S, Thakur R, Goel S. Fascinating aspects of nanosilicon enabled plant stress tolerance-A comprehensive review. Plant Nano Biol. 2024;8:100077. https://doi.org/10.1016/j.plnbio.2024.100077
  9. 9. Kong X-P, Zhang B-H, Wang J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J Agric Food Chem. 2021;69(24):6735-54. https://doi.org/10.1021/acs.jafc.1c01724
  10. 10. Singh SP, Endley N. Fabrication of nano-silica from agricultural residue and their application. In: Nanomaterials for agriculture and forestry applications. Elsevier; 2020. p. 107-34 https://doi.org/10.1016/B978-0-12-818896-6.00006-2
  11. 11. Kouadri I, Ben Seghir B, Hemmami H, Zeghoud S, Allag N, Rebiai A, et al. Extraction of silica from different sources of agricultural waste. Asian J Res Chem. 2023;16(1):97-101. https://doi.org/10.52711/0974-4150.2023.00016
  12. 12. Shahbaz A, Ayaz M, Bin Khalid U, Liaqat L. Sustainable synthesis of silica nanoparticles from agricultural waste and its utilization in modern technology: A review. Energy Sources A. 2023;45(1):1464-84. https://doi.org/10.1080/15567036.2023.2189487
  13. 13. Goswami P, Mathur J, Srivastava N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon. 2022;8(7):e09934. https://doi.org/10.1016/j.heliyon.2022.e09934
  14. 14. Awad-Allah EF. Effectiveness of silica nanoparticle application as plant nano-nutrition: a review. J Plant Nutr. 2023;46(11):2763-76. https://doi.org/10.1080/01904167.2023.2162234
  15. 15. Setyawan N, Hoerudin, Yuliani S. Synthesis of silica from rice husk by sol-gel method. In: Proceedings of the 1st International Conference on Agriculture and Bioindustry; 2021 Oct 27-28; Bogor, Indonesia. Bristol (UK): IOP Publishing; 2021. p. 012149. https://doi.org/10.1088/1755-1315/733/1/012149
  16. 16. Azat S, Korobeinyk A, Moustakas K, Inglezakis V. Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod. 2019;217:352-9. https://doi.org/10.1016/j.jclepro.2019.01.142
  17. 17. Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. J Environ Manage. 2023;338:117851. https://doi.org/10.1016/j.jenvman.2023.117851
  18. 18. Terzioğlu P, Yücel S, Kuş Ç. Review on a novel biosilica source for production of advanced silica-based materials: Wheat husk. Asia Pac J Chem Eng. 2019;14(1):e2262. https://doi.org/10.1002/apj.2262
  19. 19. Seroka NS, Taziwa R, Khotseng L. Green synthesis of crystalline silica from sugarcane bagasse ash: physico-chemical properties. Nanomaterials. 2022;12(13):2184. https://doi.org/10.3390/nano12132184
  20. 20. September LA, Kheswa N, Seroka NS, Khotseng L. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash–a mini review. RSC Advances. 2023;13(2):1370-80. https://doi.org/10.1039/D2RA07490G
  21. 21. Farirai F, Mupa M, Daramola MO. An improved method for the production of high purity silica from sugarcane bagasse ash obtained from a bioethanol plant boiler. Particulate Sci Technol. 2021;39(2):252-9. https://doi.org/10.1080/02726351.2020.1734700
  22. 22. Manigandan P. Experimental investigations of epoxy biocomposites developed using alkali-silane treated cellulosic corn husk fiber and corn cob biosilica. Silicon. 2023;15(6):2941-51.
  23. 23. Harun Z, Azhar FH, Hussin R, Ibrahim SA, Hubadillah SK, Sazali N, et al. The extraction of organic silica from agricultural waste: a mini review. Emerg Adv Integr Technol. 2024;5(1):65-74. https://doi.org/10.30880/emait.2024.05.01.009
  24. 24. Adediran AA, Alaneme KK, Oladele IO, Akinlabi ET. Processing and structural characterization of Si-based carbothermal derivatives of bamboo leaf. Procedia Manufacturing. 2019;35:389-94. https://doi.org/10.1016/j.promfg.2019.05.057
  25. 25. Silviana S, Bayu WJ. Silicon conversion from bamboo leaf silica by magnesiothermic reduction for development of Li-ion battery anode. In: Proceedings of the 24th Regional Symposium on Chemical Engineering; 2017 Nov 15–16; Semarang, Indonesia. Les Ulis (FR): EDP Sciences; 2018. p. 05021. https://doi.org/10.1051/matecconf/201815605021.
  26. 26. Peerzada JG, Chidambaram R. A statistical approach for biogenic synthesis of nano-silica from different agro-wastes. Silicon. 2021;13:2089-101. https://doi.org/10.1007/s12633-020-00439-5
  27. 27. Anuar MF, Fen YW, Zaid MHM, Matori KA, Khaidir REM. The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash. Applied Sciences. 2020;10(6):2128. https://doi.org/10.3390/app10062128
  28. 28. Razak NAA, Othman NH, Shayuti MSM, Jumahat A, Sapiai N, Lau WJ. Agricultural and industrial waste-derived mesoporous silica nanoparticles: a review on chemical synthesis route. J Environ Chem Eng. 2022;10(2):107322. https://doi.org/10.1016/j.jece.2022.107322
  29. 29. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Research Letters. 2016;11:40. https://doi.org/10.1186/s11671-016-1257-4
  30. 30. Huang R-a, Hu X, Guo Y, Wang J, Yang B. Highly hierarchical fibrillar biogenic silica with mesoporous structure derived from the perennial plant Equisetum fluviatile. ACS Appl Mater Interfaces. 2020;12(31):35259-65. https://doi.org/10.1021/acsami.0c09567
  31. 31. Hosseini Mohtasham N, Gholizadeh M. Nano silica extracted from Equisetum arvense as a natural silica support for the synthesis of H₃PW₁₂O₄₀ immobilized on aminated magnetic nanoparticles (Fe₃O₄@SiO₂-EP-NH-HPA): a novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives. Res Chem Intermed. 2020;46:3037-66. https://doi.org/10.1007/s11164-020-04161-0
  32. 32. Mattos BD, Gomes GR, de Matos M, Ramos LP, Magalhães WL. Consecutive production of hydroalcoholic extracts, carbohydrate derivatives and silica nanoparticles from Equisetum arvense. Waste and Biomass Valorization. 2018;9:1993-2002. https://doi.org/10.1007/s12649-018-0292-7
  33. 33. Adach K, Kroisova D, Fijalkowski M. Biogenic silicon dioxide nanoparticles processed from natural sources. Particulate Sci Technol. 2021;39(4):481-9. https://doi.org/10.1080/02726351.2020.1828638
  34. 34. Tayebee R, Pejhan A, Ramshini H, Maleki B, Erfaninia N, Tabatabaie Z, et al. Equisetum arvense as an abundant source of silica nanoparticles. SiO₂/H₃PW₁₂O₄₀ nanohybrid material as an efficient and environmental benign catalyst in the synthesis of 2-amino-4H-chromenes under solvent-free conditions. Appl Organomet Chem. 2018;32(1):e3924. https://doi.org/10.1002/aoc.3924
  35. 35. Rahimzadeh CY, Barzinjy AA, Mohammed AS, Hamad SM. Green synthesis of SiO₂ nanoparticles from Rhus coriaria L. extract: comparison with chemically synthesized SiO₂ nanoparticles. PLoS One. 2022;17(8):e0268184. https://doi.org/10.1371/journal.pone.0268184
  36. 36. Roychoudhury A. Silicon-nanoparticles in crop improvement and agriculture. Int J Recent Adv Biotechnol Nanotechnol. 2020;3(1):2582-1571.
  37. 37. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N. Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology. 2014;8(3):133-7. https://doi.org/10.1049/iet-nbt.2013.0155
  38. 38. Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J. 2012;72(2):320-30. https://doi.org/10.1111/j.1365-313X.2012.05045.x
  39. 39. Snehal S, Lohani P. Silica nanoparticles: its green synthesis and importance in agriculture. J Pharmacogn Phytochem. 2018;7(5):3383-93.
  40. 40. Banerjee K, Pramanik P, Maity A, Joshi DC, Wani SH, Krishnan P. Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers). In: Ghorbanpour M, Wani SH, editors. Advances in phytonanotechnology. Amsterdam: Elsevier; 2019. p. 123-52
  41. 41. Mukarram M, Petrik P, Mushtaq Z, Khan MMA, Gulfishan M, Lux A. Silicon nanoparticles in higher plants: uptake, action, stress tolerance and crosstalk with phytohormones, antioxidants and other signalling molecules. Environ Pollut. 2022;310:119855. https://doi.org/10.1016/j.envpol.2022.119855
  42. 42. Vass A. Over half the world will face water shortages by 2032. British Medical Journal Publishing Group; 2002. https://doi.org/10.1136/bmj.324.7349.1293
  43. 43. Goswami P, Mathur J. Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today. 2019;6(2):232-42. https://doi.org/10.14719/pst.6.2.433
  44. 44. Huang M, Yao Q, Feng G, Zou H, Lu Z-H. Nickel–ceria nanowires embedded in microporous silica: controllable synthesis, formation mechanism and catalytic applications. Inorg Chem. 2020;59(8):5781-90. https://doi.org/10.1021/acs.inorgchem.9b03673
  45. 45. Chiappini C, De Rosa E, Martinez J, Liu X, Steele J, Stevens M, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14(5):532-9. https://doi.org/10.1038/nmat4249
  46. 46. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331–6. https://doi.org/10.1038/nmat2398
  47. 47. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149. https://doi.org/10.1126/scitranslmed.3009524
  48. 48. Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta. 2021;230:122026. https://doi.org/10.1016/j.talanta.2020.122026
  49. 49. Mathew FP, Alocilja EC. Porous silicon-based biosensor for pathogen detection. Biosens Bioelectron. 2005;20(8):1656–61. https://doi.org/10.1016/j.bios.2004.08.006
  50. 50. Sastry RK, Rashmi H, Rao N, Ilyas S. Integrating nanotechnology into agri-food systems research in India: a conceptual framework. Technol Forecast Soc Change. 2010;77(4):639–48. https://doi.org/10.1016/j.techfore.2009.11.008
  51. 51. Guerra FD, Attia MF, Whitehead DC, Alexis F. Nanotechnology for environmental remediation: materials and applications. Molecules. 2018;23(7):1760. https://doi.org/10.3390/molecules23071760
  52. 52. Meng L, Ren Y, Zhou Z, Li C, Wang C, Fu S. Monodisperse silica nanoparticle suspension for developing latent blood fingermarks. Forensic Sci Res. 2020;5(1):38–46. https://doi.org/10.1080/20961790.2018.1446721
  53. 53. Kiruba UP, Kumar PS, Prabhakaran C, Aditya V. Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd (II) ions-surface modified Eucalyptus seeds system. J Taiwan Inst Chem Eng. 2014;45(6):2957–68. https://doi.org/10.1016/j.jtice.2014.08.016
  54. 54. Sorour M, Helmy M, El Mahrouky AS, Ahmed II. Using activated and nano silica as adsorbent materials for filtration of industrial wastewater. Food Technol Res J. 2023;2(3):68–72. https://doi.org/10.21608/ftrj.2023.329291
  55. 55. Manyangadze M, Chikuruwo NM, Narsaiah TB, Chakra CS, Charis G, Danha G, et al. Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon. 2020;6(11). https://doi.org/10.1016/j.heliyon.2020.e05309
  56. 56. Foroutan R, Mohammadi R, Peighambardoust SJ, Jalali S, Ramavandi B. Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media. Environ Technol Innov. 2020;19:101031. https://doi.org/10.1016/j.eti.2020.101031
  57. 57. Xiong C, Wang S, Zhang L, Li Y, Srinivasakannan C, Peng J. Preparation and application of phosphinic acid functionalized nanosilica for the effective removal of mercury (II) in aqueous solutions. J Sol-Gel Sci Technol. 2018;87:442–54. https://doi.org/10.1007/s10971-018-4723-x
  58. 58. Meky N, Salama E, Soliman MF, Naeem SG, Ossman M, Elsayed M. Synthesis of nano-silica oxide for heavy metal decontamination from aqueous solutions. Water Air Soil Pollut. 2024;235(2):154. https://doi.org/10.1007/s11270-024-06944-6
  59. 59. Alnasra O, Khalili F. Synthesis and characterization of a nanosilica-cysteine composite for arsenic (III) ion removal. Acta Chim Slov. 2023;70(4). https://doi.org/10.17344/acsi.2023.8160
  60. 60. Akhayere E, Essien EA, Kavaz D. Effective and reusable nano-silica synthesized from barley and wheat grass for the removal of nickel from agricultural wastewater. Environ Sci Pollut Res. 2019;26(25):25802–13. https://doi.org/10.1007/s11356-019-05759-x
  61. 61. Saw G, Nagdev P, Jeer M, Murali-Baskaran R. Silica nanoparticles mediated insect pest management. Pestic Biochem Physiol. 2023:105524. https://doi.org/10.1016/j.pestbp.2023.105524
  62. 62. Wang Q, Ma X, Zhang W, Pei H, Chen Y. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics. 2012;4(10):1105–12. https://doi.org/10.1039/c2mt20149f
  63. 63. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154–63. https://doi.org/10.1016/j.plantsci.2010.04.012
  64. 64. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15(4):897–900. https://doi.org/10.1021/bc049951i
  65. 65. Barik T, Sahu B, Swain V. Nanosilica-from medicine to pest control. Parasitology Res. 2008;103:253–8. https://doi.org/10.1007/s00436-008-0975-7
  66. 66. Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem. 2016;64(7):1447–83. https://doi.org/10.1021/acs.jafc.5b05214
  67. 67. Wanyika H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. In: Nanotechnology for sustainable development. Springer; 2014. p. 137–48
  68. 68. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, et al. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. J Environ Manage. 2016;184:157–69. https://doi.org/10.1016/j.jenvman.2016.09.005
  69. 69. Shah MA, Wani SH, Khan AA. Nanotechnology and insecticidal formulations. J Food Bioeng Nanoprocessing. 2016;1(3):285–310.
  70. 70. Oirdi ME, Yaseen M, Farwa U, Raza MA, Farhan M, Sandhu ZA, et al. Crops and people: the dangers and potential benefits of pesticides. Cogent Food Agric. 2024;10(1):2334096. https://doi.org/10.1080/23311932.2024.2334096
  71. 71. Ibrahim SS, Elbehery HH, Samy A. The efficacy of green silica nanoparticles synthesized from rice straw in the management of Callosobruchus maculatus (Col., Bruchidae). Sci Rep. 2024;14(1):8834. https://doi.org/10.1038/s41598-024-58856-4
  72. 72. Khalifa A, Moselhy W, Mohammed H, Nabil T, Shaban M, Aboelhadid S, et al. Toxicological evaluations of chitosan and silica nanoparticles loaded with deltamethrin with improved efficiency against Culex pipiens larvae. Int J Environ Sci Technol. 2022;19(12):11809–28. https://doi.org/10.1007/s13762-022-03921-6
  73. 73. Balamurugan S, Priyadharshini V, Venkatesh G. A review on nano-pesticides in pest management. Mater Today Proc. 2023;73:3309–14. https://doi.org/10.1016/j.matpr.2023.02.354
  74. 74. Tamburic-Ilincic L, Schaafsma A. The prevalence of Fusarium spp. colonizing seed corn stalks in southwestern Ontario, Canada. Can J Plant Sci. 2009;89(1):103–6. https://doi.org/10.4141/CJPS08083
  75. 75. Epstein E. Silicon in plants: facts vs. concepts. In: Studies in plant science. Elsevier; 2001. p. 1–15 https://doi.org/10.1016/S0928-3420(01)80005-7
  76. 76. Rains D, Epstein E, Zasoski R, Aslam M. Active silicon uptake by wheat. Plant Soil. 2006;280:223–8. https://doi.org/10.1007/s11104-005-3082-x
  77. 77. Yin H, Zhao X, Du Y. Oligochitosan: a plant diseases vaccine-a review. Carbohydr Polym. 2010;82(1):1–8. https://doi.org/10.1016/j.carbpol.2010.03.066
  78. 78. Das SN, Madhuprakash J, Sarma P, Purushotham P, Suma K, Manjeet K, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol. 2015;35(1):29–43. https://doi.org/10.3109/07388551.2013.798255
  79. 79. Thakur M, Sohal BS. Role of elicitors in inducing resistance in plants against pathogen infection: a review. Int Scholarly Res Notices. 2013;2013(1):762412. https://doi.org/10.1155/2013/762412
  80. 80. Iwasaki K, Maier P, Fecht M, Horst WJ. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J Plant Physiol. 2002;159(2):167–73. https://doi.org/10.1078/0176-1617-00691
  81. 81. Liang Y, Wong J, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium-contaminated soil. Chemosphere. 2005;58(4):475–83. https://doi.org/10.1016/j.chemosphere.2004.09.034
  82. 82. Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr. 2004;50(1):11–8. https://doi.org/10.1080/00380768.2004.10408447
  83. 83. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett. 2005;249(1):1–6. https://doi.org/10.1016/j.femsle.2005.06.034
  84. 84. Kim S-G, Kim K-W, Park E-W. Increase in resistance to leaf blast as accumulation of silicon in rice leaf tissues. Plant Pathol J. 2001;17(6):374–1.
  85. 85. Urbi ZR. Development of resistance system in rice plant against blast disease caused by Magnaporthe oryzae using selected novel chemicals. MS [thesis]. Dhaka: Sher-e-Bangla Agricultural University; 2021.
  86. 86. Rodrigues F, Datnoff L, Korndörfer G, Seebold K, Rush M. Effect of silicon and host resistance on sheath blight development in rice. Plant Dis. 2001;85(8):827–32. https://doi.org/10.1094/PDIS.2001.85.8.827
  87. 87. Seebold K, Kucharek T, Datnoff LA, Correa-Victoria FJ, Marchetti M. The influence of silicon on components of resistance to blast in susceptible, partially resistant and resistant cultivars of rice. Phytopathology. 2001;91(1):63–9. https://doi.org/10.1094/PHYTO.2001.91.1.63
  88. 88. Kim SG, Kim KW, Park EW, Choi D. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology. 2002;92(10):1095–103. https://doi.org/10.1094/PHYTO.2002.92.10.1095
  89. 89. Madany MM, Saleh AM, Habeeb TH, Hozzein WN, AbdElgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ Sci Nano. 2020;7(5):1415–30. https://doi.org/10.1039/D0EN00157B
  90. 90. Awad-Allah EF, Shams AH, Helaly AA. Suppression of bacterial leaf spot by green synthesized silica nanoparticles and antagonistic yeast improves growth, productivity and quality of sweet pepper. Plants. 2021;10(8):1689. https://doi.org/10.3390/plants10081689
  91. 91. Youssef K, de Oliveira AG, Tischer CA, Hussain I, Roberto SR. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int J Biol Macromol. 2019;141:247–58. https://doi.org/10.1016/j.ijbiomac.2019.08.024
  92. 92. dos Santos OAL, dos Santos MS, Antunes Filho S, Backx BP. Nanotechnology for the control of plant pathogens and pests. Plant Nano Biol. 2024:100080. https://doi.org/10.1016/j.plgene.2023.100080
  93. 93. Chen S, Guo X, Zhang B, Nie D, Rao W, Zhang D, et al. Mesoporous silica nanoparticles induce intracellular peroxidation damage of Phytophthora infestans: a new type of green fungicide for late blight control. Environ Sci Technol. 2023;57(9):3980–9. https://doi.org/10.1021/acs.est.2c08198
  94. 94. Albalawi MA, Abdelaziz AM, Attia MS, Saied E, Elganzory HH, Hashem AH. Mycosynthesis of silica nanoparticles using Aspergillus niger: control of Alternaria solani causing early blight disease, induction of innate immunity and reducing of oxidative stress in eggplant. Antioxidants. 2022;11(12):2323. https://doi.org/10.3390/antiox11122323
  95. 95. Xin X, Judy JD, Sumerlin BB, He Z. Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environ Chem. 2020;17(6):413–25. https://doi.org/10.1071/EN20043
  96. 96. Neme K, Nafady A, Uddin S, Tola YB. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon. 2021;7(12). https://doi.org/10.1016/j.heliyon.2021.e08516
  97. 97. Kassem HS, Tarabih ME, Ismail H, Eleryan EE. Influence of nano-silica/chitosan film coating on the quality of ‘Tommy Atkins’ mango. Processes. 2022;10(2):279. https://doi.org/10.3390/pr10020279
  98. 98. Zahran N, Sayed R. Protective effect of nanosilica on irradiated dates against saw toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) adults. J Stored Prod Res. 2021;92:101799. https://doi.org/10.1016/j.jspr.2021.101799
  99. 99. Idris I, Naddaf M, Harmalani H, Alshater R, Alsafadi R. Effects of nano-silica extracted from two different plant sources on survival and development of Phthorimaea operculella (Zeller.) larvae. Hellenic Plant Protection Journal. 2023;16(2):59-66. https://doi.org/10.2478/hppj-2023-0008
  100. 100. Wazid SN, Prabhuraj A, Naik RH, Shakuntala N, Sharanagouda H. The persistence of residual toxicity of zinc, copper and silica green nanoparticles against important storage pests. J Entomol Zool Stud. 2020;8:1207–11.
  101. 101. Croissant JG, Butler KS, Zink JI, Brinker CJ. Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nat Rev Mater. 2020;5(12):886–909. https://doi.org/10.1038/s41578-020-0213-7
  102. 102. Mohammadi P, Abbasinia M, Assari MJ, Oliaei M. The toxicology of silica nanoparticles: a review. Toxicol Environ Chem. 2018;100(3):285–316. https://doi.org/10.1080/02772248.2018.1432307
  103. 103. Thomas RS, Bahadori T, Buckley TJ, Cowden J, Deisenroth C, Dionisio KL, et al. The next generation blueprint of computational toxicology at the US Environmental Protection Agency. Toxicol Sci. 2019;169(2):317–32. https://doi.org/10.1093/toxsci/kfz044
  104. 104. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environ Health Perspect. 1996;104(suppl 4):715–40. https://doi.org/10.1289/ehp.96104s4715
  105. 105. Garcia-Mouton C, Hidalgo A, Cruz A, Pérez-Gil J. The Lord of the lungs: the essential role of pulmonary surfactant upon inhalation of nanoparticles. Eur J Pharm Biopharm. 2019;144:230–43. https://doi.org/10.1016/j.ejpb.2019.07.012
  106. 106. Greenberg MI, Waksman J, Curtis J. Silicosis: a review. Dis Mon. 2007;53(8):394–416. https://doi.org/10.1016/j.disamonth.2007.04.001`
  107. 107. Leung CC, Yu ITS, Chen W. Silicosis. Lancet. 2012;379(9830):2008–18. https://doi.org/10.1016/S0140-6736(12)60235-9
  108. 108. Boccuni F, Ferrante R, Tombolini F, Natale C, Gordiani A, Sabella S, et al. Occupational exposure to graphene and silica nanoparticles. Part I: workplace measurements and samplings. Nanotoxicology. 2020;14(9):1280–300. https://doi.org/10.1080/17435390.2020.1834634
  109. 109. Vareda JP, García-González CA, Valente AJ, Simón-Vázquez R, Stipetic M, Durães L. Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles. Environ Sci Nano. 2021;8(5):1177–95. https://doi.org/10.1039/D0EN01019J
  110. 110. Heidel D, Carson K, Baker J, editors. Safety and health management aspects for handling silica-based products and engineered nanoparticles in sequences of shale reservoir stimulations operations. In: Proceedings of SPE International Conference and Exhibition on Health, Safety, Environment and Sustainability; 2014 Mar 17–19; Long Beach, CA. Richardson, TX: Society of Petroleum Engineers; 2014.
  111. 111. Li J, Yang H, Sha S, Li J, Zhou Z, Cao Y. Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: influence of cell types and pulmonary surfactant component DPPC. Ecotoxicol Environ Saf. 2019;186:109770. https://doi.org/10.1016/j.ecoenv.2019.109770
  112. 112. Karimi T, Najmoddin N, Menhaje-Bena R. Evaluation of silica nanoparticles cytotoxicity (20–40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5). Occup Med. 2021. https://doi.org/10.1093/occmed/kqab153
  113. 113. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology. 2010;276(2):95–102. https://doi.org/10.1016/j.tox.2010.07.002
  114. 114. Lankoff A, Arabski M, Wegierek-Ciuk A, Kruszewski M, Lisowska H, Banasik-Nowak A, et al. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology. 2013;7(3):235–50. https://doi.org/10.3109/17435390.2012.657580
  115. 115. Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, et al. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol. 2016;35(2):170–83. https://doi.org/10.1177/0960327115599108
  116. 116. Battal D, Celik A, Güler G, Aktaş A, Yildirimcan S, Ocakoglu K, et al. SiO2 nanoparticle-induced size-dependent genotoxicity–an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem Toxicol. 2015;38(2):196–204. https://doi.org/10.3109/01480545.2014.944683
  117. 117. Napierska D, Rabolli V, Thomassen LC, Dinsdale D, Princen C, Gonzalez L, et al. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol. 2012;25(4):828–37. https://doi.org/10.1021/tx200500j
  118. 118. Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol. 2013;32(2):186–95. https://doi.org/10.1177/0960327112452119
  119. 119. Gómez DM, Urcuqui-Inchima S, Hernandez JC. Silica nanoparticles induce NLRP3 inflammasome activation in human primary immune cells. Innate Immun. 2017;23(8):697–708. https://doi.org/10.1177/1753425917709144
  120. 120. Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, et al. The toxicity of silica nanoparticles to the immune system. Nanomedicine. 2018;13(15):1939–62. https://doi.org/10.2217/nnm-2018-0113
  121. 121. Malfatti MA, Palko HA, Kuhn EA, Turteltaub KW. Determining the pharmacokinetics and long-term biodistribution of SiO2 nanoparticles in vivo using accelerator mass spectrometry. Nano letters. 2012;12(11):5532-8. https://doi.org/10.1021/nl302801x
  122. 122. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS nano. 2010;4(2):699-708. https://doi.org/10.1021/nn901186v
  123. 123. Kim M, Park J-H, Jeong H, Hong J, Choi WS, Lee B-H, et al. An evaluation of the in vivo safety of nonporous silica nanoparticles: ocular topical administration versus oral administration. Scientific reports. 2017;7(1):8238. https://doi.org/10.1038/s41598-017-08664-7
  124. 124. Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, et al. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization and colloidal stability. ACS nano. 2012;6(8):6829-42. https://doi.org/10.1021/nn301502z
  125. 125. Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, et al. Silica nanoparticles: biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. https://doi.org/10.1016/j.biopha.2022.113053
  126. 126. Kim J, Heo Y-J, Shin S. Haemocompatibility evaluation of silica nanomaterials using hemorheological measurements. Clin Hemorheol Microcirc. 2016;62(2):99-107. https://doi.org/10.3233/CH-151924
  127. 127. Giovannini G, Warncke P, Fischer D, Stranik O, Hall AJ, Gubala V. Improving colloidal stability of silica nanoparticles when stored in responsive gel: application and toxicity study. Nanotoxicology. 2018;12(5):407-22. https://doi.org/10.1080/17435390.2018.1457881

Downloads

Download data is not yet available.