Research Articles
Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture
Alluring response of the parasitoid Phanerotoma hendecasiella Cam to synomones from Hendecasis duplifascialis Hampson-infested jasmine (Jasminum sambac L.) buds and compound identification by GC-MS
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
The jasmine budworm, Hendecasis duplifascialis, is a serious pest of jasmine that poses a severe threat, as it damages the economic part, the buds. The parasitoid, Phanerotoma hendecasiella is specific to the pest and was reported to be a potent candidate in checking the pest menace naturally. Synomones produced by plants have significance in eliciting host-seeking response in several natural enemies. With the intention to test the oriental response of P. hendecasiella on the saturated hydrocarbons from jasmine buds infested with jasmine bud worm, a laboratory study was conducted using an eight-arm olfactometer. The investigated components were the bud and leaf extracts of the jasmine major pests viz. budworm, blossom midge, leaf webworm and two spotted mites, along with healthy jasmine bud and leaf extracts as standard checks, hexane and water as negative and positive control. The eight arms of the olfactometer were placed with the extracts in filter paper strips. The results revealed that out of the 50 parasitoids released, 11 and 25 oriented to budworm infested bud extracts after 2 and 4 hours of treatment, while it was only one in both controls. Further, GC-MS analysis of the bud worm infested jasmine buds revealed the presence of several compounds with the ability to lure beneficial insects such as allyl iso-thiocyanate, linalool, methyl salicylate and naphthalene. The orientation of P. hendecasiella in budworm infested bud extracts and the existence of potent components in them flags a positive signal for the utility of the parasitoid in natural budworm suppression.
References
- 1. Davidson IMK, Suganthy M. Plant extracts for the management of two spotted spider mite Tetranychus urticae Koch on Jasminum sambac. Pest Manag Hortic Ecosyst. 2023;29(1):172-76. https://doi.org/10.5958/0974-4541.2023.00027.9
- 2. Kamala IMK. Comparative bioecology of budworm of Jasmine, Hendecasis duplifascialis Hampson (Pyrausidae: Lepidoptera) in different Jasminum cultivars. Pestology. 2021;45:23-32.
- 3. Kamala IM, Kennedy JS. Evaluation of microbial agents against jasmine budworm, Hendecasis duplifascialis Hampson in jasmine (Jasminum sambac L.). Curr Biotica. 2018;10(3):230-40.
- 4. Kamala IM, Kennedy JS. Survey on the incidence of jasmine budworm, Hendecasis duplifascialis Hampson and its natural enemies in Jasmine (Jasminum sambac L.) ecosystem in Tamil Nadu. Biopestic Int. 2017;13(2):133-39.
- 5. Kamala IM, Chinniah C, Kalyanasundaram M, Kennedy JS, Suganthy M. Pesticidal effect of indigenous plant extracts against jasmine budworm, Hendecasis duplifascialis Hampson in jasmine (Jasminum sambac L.). Int J Trop Agric. 2017a;35(1):315-23.
- 6. Kamala IM, Kennedy JS, Chinniah C, Kalyanasundaram M, Suganthy M, Muthamilan M, et al. Analysis of technology gaps and relative importance of jasmine budworm, Hendecasis duplifascialis Hampson in Tamil Nadu. Int J Agric Sci Res. 2017b;7(2):319-24.
- 7. Kamala IM. Crop diversification for sustainable management of budworm (Hendecasis duplifascialis Hampson) of Jasmine (Jasminum sambac L.). Pest Manag Hortic Ecosyst. 2019a;24(2):133-38. https://doi.org/10.15406/hij.2019.03.00111
- 8. Kamala IM. Seasonal incidence and influence of weather factors on population dynamics of Jasmine budworm, Hendecasis duplifascialis Hampson in Jasmine (Jasminum sambac L.) ecosystem. Biopestic Int. 2019b;15(2):500-03.
- 9. Kamala IM. Crop diversification for sustainable management of two spotted mite (Tetranychus urticae Koch.) of Jasmine (Jasminum sambac L.). Horticult Int J. 2019;3(2):46‒53. https://doi.org/10.15406/hij.2019.03.00111
- 10. Kamala IM. Crop diversification for sustainable management of blossom midge (Contarinia maculipennis Felt) of Jasmine (Jasminum sambac L.). Indian J Ecol. 2019d;46(2):371-77. https://doi.org/10.15406/hij.2019.03.00111
- 11. Keshavareddy S, Samata H. Bioecology, damage and management of budworm, Hendecasis duplifascialis Hampson: An overview. Pest Manag Hortic Ecosyst. 2020;1:35-40. https://doi.org/10.5958/0974-4541.2020.00006.5
- 12. Kamala IM. Studies on diversity, bioecology and integrated management of major pests of jasmine (Jasminum sambac L.) [PhD thesis]. Coimbatore: Tamil Nadu Agric Univ. 2017.
- 13. Ranjith AM. An inexpensive olfactometer and wind tunnel for Trichogramma chilonis Ishii (Trichogrammatidae: Hymenoptera). J Trop Agric. 2007;45(1-2):63-65.
- 14. Hao H, Sun J, Dai J. Preliminary analysis of several attractants and spatial repellents for the mosquito, Aedes albopictus using an olfactometer. J Insect Sci. 2012;76:1-10. https://doi.org/10.1673/031.012.7601
- 15. Agrawal AA. Mechanisms, ecological consequences and agricultural implications of tri-trophic interactions. Curr Opin Plant Biol. 2000;3(4):329-35. https://doi.org/10.1016/S1369-5266(00)00089-3
- 16. Moosavi M, Zandi-Sohani N, Ali R. Olfactory responses of the parasitoid wasp, Anisopteromalus calandrae (Hymenoptera: Pteromalidae) to odors from hosts and stored grain. J Plant Prot Res. 2021;61(2):189-94.
- 17. Stafford KC, Pitts CW, Webb TL. Olfactometer studies of host seeking by the parasitoid Spalangia endius Walker (Acari: Macrochelidae). Environ Entomol. 1984;13(1):228-31. https://doi.org/10.1093/ee/13.1.228
- 18. Russavage EM, Hewlett JA, Grunseich J, Szczepaniec A, Rooney W, Helms AM, et al. Aphid-induced volatiles and subsequent attraction of natural enemies varies among sorghum cultivars. J Chem Ecol. 2024;50(5-6):1-14. https://doi.org/10.1007/s10886-024-01493-y
- 19. Masini P, Lorenzo A, Manuela R, Silvana P, Fabio F, Gianandrea S. Olfactory cues in the host-location of the European ecto-parasitoids Sclerodermus cereicollis and Sclerodermus domesticus (Hymenoptera: Bethylidae). J Stored Prod Res. 2024;109:102441. https://doi.org/10.1016/j.jspr.2024.102441
- 20. Aleosfoor M, Ehteshami F, Fekrat L. A six-arm olfactometer for analysing olfactory responses of Goniozus legneri Gordh (Hymenoptera: Bethylidae), the larval ectoparasitoid of carob moth. J Entomol Acarol Res. 2014. https://doi.org/10.4081/jear.2014.3787
- 21. Zhang L, Su O, Wang M, Wen M, Yi-Xuan H, Li SS. Linalool: A ubiquitous floral volatile mediating the communication between plants and insects. J Syst Evol. 2022. https://doi.org/10.1111/jse.12930
- 22. Schaller M, Korting HC. Allergic airborne contact dermatitis from essential oils used in aroma therapy. Clin Exp Dermatol. 1995;20:143-45. https://doi.org/10.1111/j.1365-2230.1995.tb02719.x
- 23. Cockayne SE, Gawkrodger DJ. Occupational contact dermatitis in an aromatherapist. Contact Dermatitis. 1997;37:306-07. https://doi.org/10.1111/j.1600-0536.1997.tb02477.x
- 24. De Groot AC, Frosch S. Contact allergy to cosmetics: causative ingredients. Contact Dermatitis. 1997;17:26-34. https://doi.org/10.1111/j.1600-0536.1987.tb02640.x
- 25. De Groot AC, Coenraads PJ, Bruynzeel DP, Jagtman BA, van Ginkel CJW, Noz PGM, et al. Routine patch testing with fragrance chemicals in The Netherlands. Contact Dermatitis. 2000;42:184-85.
- 26. Tripathi A, Mishra S. Plant monoterpenoids (prospective pesticides). In: Omkar, editor. Ecofriendly pest management for food security. London: Academic Press. 2016. p. 507-24. https://doi.org/10.1016/B978-0-12-803265-7.00016-6
- 27. Papanastasiou SA, Ioannou CS, Papadopoulos NT. Oviposition-deterrent effect of linalool - A compound of citrus essential oils - on female Mediterranean fruit flies, Ceratitis capitata (Diptera: Tephritidae). Pest Manag Sci. 2020;76(9):3066-77. https://doi.org/10.1002/ps.5858
- 28. Liu J, Sun L, Fu D, Zhu J, Liu M, Xiao F, et al. Herbivore-induced rice volatiles attract and affect the predation ability of the wolf spiders, Pirata subpiraticus and Pardosa pseudoannulata. Insects. 2022;13(1):90. https://doi.org/10.3390/insects13010090
- 29. Kamatou GPP, Viljoen AV. Linalool - A review of a biologically active compound of commercial importance. Nat Prod Commun. 2008;3(7):1183-92. https://doi.org/10.1177/1934578X0800300727
- 30. Yuan JS, Kollner TG, Grant J, Zhao N, Zhuanga X, Degenhardth J. Elucidation of the genomic basis of indirect plant defense against insects. Plant Signal Behav. 2008;3(9):720-21. https://doi.org/10.4161/psb.3.9.6468
- 31. Ali J, Wei D, Mahamood M, Zhou F, King PJH, Zhou W, et al. Exogenous application of methyl salicylate induces defence in Brassica against peach potato aphid, Myzus persicae. Plants. 2023;12:1770. https://doi.org/10.3390/plants12091770
- 32. Yang Z, Cheng Q, Shi-Xiang P, Yan L, Zhuo S, Chen L, et al. Aphid-repellent, ladybug-attraction activities and binding mechanism of methyl salicylate derivatives containing geraniol moiety. Pestic Biochem Physiol. 2022;79(2):760-70. https://doi.org/10.1002/ps.7245
- 33. Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front Plant Sci. 2021;12:710268. https://doi.org/10.3389/fpls.2021.710268
- 34. Yingyue X, Xuanchen Z, Bin Y, Yang Y, Min Z, Haibin Y, et al. Methyl salicylate reduces aphid abundance in maize through multiple modes of action. J Integr Agric. 2024.
- 35. Malinger R, David H, Claudio G. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol. 2011;104(1):115-24. https://doi.org/10.1603/EC10253
- 36. Abana UC, Amarasekare KG. Efficacy of herbivore-induced plant volatile methyl salicylate in evaluating the seasonal abundance of herbivorous thrips (Thysanoptera: Thripidae) in sweet pepper. Insects. 2024;15:156. https://doi.org/10.3390/insects15030156
- 37. Alexander MB, Dalila R, Sinaiah H, Jana CL. Evaluating methyl salicylate lures on natural enemies, pests and meristem damage in red maple fields. J Environ Hortic. 2024;42(3):101-08. https://doi.org/10.24266/0738-2898-42.3.101
- 38. Wang B, Jacquin-Joly E, Wang G. The role of (E)-β-farnesene in tritrophic interactions: biosynthesis, chemoreception and evolution. Phytochemistry. 2024;70. https://doi.org/10.1146/annurev-ento-013024-021018
- 39. Al-Ghanim KA, Krishnappa K, Pandiyan J, Nicoletti M, Gurunathan B, Govindarajan M. Insecticidal potential of Matricaria chamomilla essential oil and its components (E)-β-farnesene, germacrene D and α-bisabolol oxide A against agricultural pests, malaria and zika virus vectors. Agriculture. 2023;13:779. https://doi.org/10.3390/agriculture13040779
- 40. Vega FE, Ann S, Jose M, James MH, Francisco I, Alfredo C, et al. A potential repellent against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). J Insect Sci. 2017;17(6):1-9. https://doi.org/10.1093/jisesa/iex095
- 41. Ingrao AJ, Walters J, Szendrei Z. Biological control of asparagus pests using synthetic herbivore-induced volatiles. Environ Entomol. 2019;48(1):202-10. https://doi.org/10.1093/ee/nvy171
- 42. Hassemer MJ, Sant’A JM, Miguel B, David W, John AP, Marcio WMO, et al. Revisiting the male-produced aggregation pheromone of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae): Identification of a six-component pheromone from a Brazilian population. J Agric Food Chem. 2016;64:6809-18. https://doi.org/10.1021/acs.jafc.6b02235
- 43. Gries R, van Houten W, Alamsetti SK, Catton H, Scott M, et al. (Z,E)-α-Farnesene: sex pheromone component of female click beetle, Selatosomus aeripennis destructor, with intra- and inter-sexual communication function. Chemoecology. 2022;170:344. https://doi.org/10.1111/eea.13142
- 44. Šobotník J, Hanus R, Kalinová B, Pupin R, Cvačka J, Bourguignon T, et al. (E,E)-α-Farnesene: an alarm pheromone of the termite Prorhinotermes canalifrons. J Chem Ecol. 2008;34(4):478-86. https://doi.org/10.1007/s10886-008-9450-2
- 45. Bhatia V, Jaya M, Ajay J, Krishan KS, Ramcharan B. Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana overexpressing farnesyl diphosphate synthase 2. Ann Bot. 2014;115(4):581-91. https://doi.org/10.1093/aob/mcu250
- 46. Kamala IM, Chinniah C, Kennedy JS, Kalyanasundaram M, Suganthy M. Identification of saturated hydrocarbons from jasmine (Jasminum sambac L.) buds damaged by blossom midge, Contarinia maculipennis Felt through GC-MS analysis. Appl Ecol Environ Sci. 2017;5(1):10-18.
- 47. Romanowski F, Klenk H. Thiocyanates and isothiocyanates, organic. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2005.
- 48. Cerón DAC, de Alencar ER, Faroni LRD, Silva MVA, Salvador DV. Toxicity of allyl isothiocyanate applied in systems with or without recirculation for controlling Sitophilus zeamais, Rhyzopertha dominica and Tribolium castaneum in corn grains. J Sci Food Agric. 2023;103(13):6373-82. https://doi.org/10.1002/jsfa.12713
- 49. Vilela AO, Dantas LR, Figueirêdo AF, Gomes JL, Santos AH, Correia PR. Allyl isothiocyanate as a fumigant in cowpea and its effect on the physical properties of the grain. Rev Cienc Agron. 2021;52(3):e20207287. https://doi.org/10.5935/1806-6690.20210064
- 50. Li Y, Lu D, Xia Y. Effects of allyl isothiocyanate fumigation on medicinal plant root knot disease control, plant survival and the soil bacterial community. BMC Microbiol. 2023;23:278. https://doi.org/10.1186/s12866-023-02992-w
- 51. Yu J, Vallad GE, Boyd NS. Evaluation of allyl isothiocyanate as a soil fumigant for tomato (Lycopersicon esculentum Mill.) production. Plant Dis. 2019;103(11):2764-70. https://doi.org/10.1094/PDIS-11-18-2013-RE
- 52. Luo T, Hou S, Yang L, Qi G, Zhao X. Nematodes avoid and are killed by Bacillus mycoides-produced styrene. J Invertebr Pathol. 2018;159:129-36. https://doi.org/10.1016/j.jip.2018.09.006
- 53. Usharani P. Kairomones for increasing the biological control efficiency of insect natural enemies. In: Basic and applied aspects of biopesticides. Springer. 2014. https://doi.org/10.1007/978-81-322-1877-7_16
- 54. Mostafiz MM, Hassan E, Lee KY. Methyl benzoate as a promising, environmentally safe insecticide: Current status and future perspectives. Agriculture. 2022;12:378. https://doi.org/10.3390/agriculture12030378
- 55. Gupta RC. Carbamate pesticides. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. London: Academic Press; 2014. p. 661-4. https://doi.org/10.1016/B978-0-12-386454-3.00106-8
- 56. Ojianwuna CC, Enwemiwe VN. Insecticidal effectiveness of naphthalene and its combination with kerosene against the emergence of Aedes aegypti in Ika North East, Delta State, Nigeria. Parasite Epidemiol Control. 2022;18:e00259. https://doi.org/10.1016/j.parepi.2022.e00259
- 57. Sudakin DL, Stone DL, Power L. Naphthalene mothballs: Emerging and recurring issues and their relevance to environmental health. Curr Top Toxicol. 2011;7:13-19.
- 58. Peshwin R, Pimentel D. Integrated pest management: Experiences with implementation. Vol. 4. Springer; 2014. https://doi.org/10.1007/978-94-007-7802-3
- 59. Saleh MA, Nadia MA, Nagy AI. Insect antifeeding azulene derivative from the brown alga Dictyota dichotoma. J Agric Food Chem. 1984;32(6):1432-34. https://doi.org/10.1021/jf00126a054
- 60. Usharani P. Kairomones for increasing the biological control efficiency of insect natural enemies. In: Basic and applied aspects of biopesticides. Springer; 2014. https://doi.org/10.1007/978-81-322-1877-7_16
- 61. Plata-Rueda A, Souza VG, Freitas CF, Zanuncio JC, Serrão JE, Martinez LC. Acute toxicity and sublethal effects of lemongrass essential oil and its components against the granary weevil, Sitophilus granarius. Insects. 2020;11:379. https://doi.org/10.3390/insects11060379
- 62. Kuckens A. Carbonic acid application to plants. United States patent US 4,835,903. 1989.
- 63. Liu S, De Barro PJ, Xu J, Luan JB, Zang LS, Wan FH. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science. 2007;318:1769-72. https://doi.org/10.1126/science.1149887
- 64. Javed MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, et al. The antibacterial and larvicidal potential of Bis-(2-ethylhexyl) phthalate from Lactiplantibacillus plantarum. Molecules. 2022;27(21):7220. https://doi.org/10.3390/molecules27217220
- 65. United States Environmental Protection Agency. Technical fact sheet on Bis-(2-ethylhexyl) phthalate. Washington (DC): USEPA. 2025. https://archive.epa.gov/water/archive/web/pdf/archived-technical-fact-sheet-on-di-2-ethylhexyl-phthalate-dehp.pdf.
- 66. New Jersey Department of Health. Bis-(2-ethylhexyl) phthalate: Hazardous substance fact sheet. Trenton (NJ): NJ Health. 1998.
- 67. Nshimiyimana JB, Khadka S, Zou P. Study on biodegradation kinetics of di-2-ethylhexyl phthalate by newly isolated halotolerant Ochrobactrum anthropi strain L1-W. BMC Res Notes. 2020;13:252. https://doi.org/10.1186/s13104-020-05096-0
- 68. Hilker M, Meiners T. Induction of plant responses towards oviposition and feeding of herbivorous arthropods: A comparison. Entomol Exp Appl. 2006;104:181-92. https://doi.org/10.1046/j.1570-7458.2002.01005.x
- 69. Ahmad F, Aslam M, Razaq M. Chemical ecology of insects and tritrophic interactions. J Res Sci. 2004;15:181-90.
- 70. Paul AVN, Srivastava M, Dureja P, Singh AK. Semiochemicals produced by tomato varieties and their role in parasitism of Corcyra cephalonica (Lepidoptera: Pyralidae) by the egg parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Int J Trop Insect Sci. 2008;28:108-16. https://doi.org/10.1017/S1742758408977493
- 71. Schulz WFS. Pheromones. In: Barton D, Nakanishi K, Meth-Cohn O, editors. Comprehensive natural products chemistry. Oxford: Pergamon; 1999. p. 197-261. https://doi.org/10.1016/B978-0-08-091283-7.00052-7
- 72. Dong K, Duan HX, Liu JT, Sun L, Gu SH, Yang RN, et al. Key site residues of pheromone-binding protein 1 involved in interacting with sex pheromone components of Helicoverpa armigera. Sci Rep. 2017;7:16859. https://doi.org/10.1038/s41598-017-17050-5
- 73. Davidson IMK. Potential volatiles emitted from jasmine plants infested by Tetranychus urticae (Acari: Tetranychidae) and attraction to predatory Scolothrips sexmaculatus (Thysanoptera: Thripidae). Persian J Acarol. 2023;12(2):327-36. https://doi.org/10.21203/rs.3.rs-1876590/v1
- 74. Ayelo PM, Yusuf AA, Chailleux A, Mohamed SA, Pirk CWW, Deletre E. Chemical cues from honeydew and cuticular extracts of Trialeurodes vaporariorum serve as kairomones for the parasitoid Encarsia formosa. J Chem Ecol. 2022;48:370-82. https://doi.org/10.1007/s10886-022-01354-6
- 75. Böttinger LC, Hüftlein F, Stökl J. Mate attraction, chemical defense and competition avoidance in the parasitoid wasp Leptopilina pacifica. Chemoecology. 2020;30(4):301-10. https://doi.org/10.1007/s00049-020-00331-3
- 76. Murali-Baskaran RK, Sridhar J, Sharma KC, Jain L. Kairomone gel formulations enhance biocontrol efficacy of Trichogramma japonicum Ashmead on rice yellow stem borer, Scirpophaga incertulas Walker. Crop Prot. 2021;146:105655. https://doi.org/10.1016/j.cropro.2021.105655
- 77. Pawar P, Murali-Baskaran RK, Sharma KC, Marathe A. Enhancing biocontrol potential of Trichogramma chilonis against borer pests of wheat and chickpea. iScience. 2023;26(4):106512. https://doi.org/10.1016/j.isci.2023.106512
- 78. Gokila G, Premalatha S, Shanmugam PS, Suganya KS, Pradeep S. Herbivore-induced plant volatiles in rice: A natural defense mechanism shaping arthropod community. Appl Ecol Environ Res. 2023;22(4):3047-58. https://doi.org/10.15666/aeer/2204_30473058
Downloads
Download data is not yet available.