Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

The mechanistic pathways of Pochonia chlamydosporia: A biology perspective on Nematode suppression and plant promotion

DOI
https://doi.org/10.14719/pst.10330
Submitted
27 June 2025
Published
29-08-2025

Abstract

Pochonia chlamydosporia is a promising nematophagous fungus known for its multifaceted role in the biological suppression of plant parasitic nematodes and the enhancement of plant health. This review provides a mechanistic perspective on its functional biology, systematically dissecting the pathways through which P. chlamydosporia establishes in the rhizosphere, parasitizes nematode eggs, produces bioactive metabolites and triggers systemic defense responses in host plants. The fungus exhibits robust colonization strategies both in soil and plant roots, driven by factors like inoculum density and environmental conditions. It secretes enzymes and forms specialized structures for nematode egg parasitism, while also synthesizing metabolites with nematicidal and plant-growth-promoting properties. Moreover, its endophytic interaction with host plants modulates signaling pathways, triggering systemic defense gene expression. Through its diverse mechanistic actions, P. chlamydosporia emerges as a powerful bioagent contributing to both nematode management and improved plant growth.

References

  1. 1. Ayaz M, Zhao J-T, Zhao W, Chi Y-K, Ali Q, Ali F, et al. Biocontrol of plant parasitic nematodes by bacteria and fungi: a multi-omics approach for the exploration of novel nematicides in sustainable agriculture. Front Microbiol. 2024;15:1433716. https://doi.org/10.3389/fmicb.2024.1433716
  2. 2. JN S. A world perspective on nematology: The role of the society. Vistas on nematology: A commemoration of the twenty-fifth anniversary of the society of nematologists. 1987;9.
  3. 3. Greco N, Di Vito M, Singh K, Saxena M. Effect of Heterodera ciceri on the growth of selected levels of cicer species. Nematologia Mediterranea. 1993;21(1):111–6.
  4. 4. Anwar SA, McKenry M. Incidence and population density of plant-parasitic nematodes infecting vegetable crops and associated yield losses in Punjab, Pakistan. Pak J Zool. 2012;44(2):327–33.
  5. 5. Singh R, Kumar U. Assessment of nematode distribution and yield losses in vegetable crops of Western Uttar Pradesh in India. Int J Sci Res. 2015;4(5):2812–6.
  6. 6. Trudgill DL, Blok VC. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol. 2001;39(1):53 –77. https://doi.org/10.1146/annurev.phyto.39.1.53
  7. 7. Manzanilla-López RH, Starr JL. Interactions with other pathogens. In: Starr JL, Manzanilla-López RH, editors. Root-knot nematodes. Wallingford UK: CABI; 2009. p. 223–45. https://doi.org/10.1079/9781845934927.0223
  8. 8. Whitehead A. Plant-parasitic nematodes: their importance and control. Plant nematode control. 1997:1-12.
  9. 9. Sindhu SS, Sehrawat A, Sharma R, Dahiya A. Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Strain. 2016;90:166. https://doi.org/10.14429/dlsj.1.10747
  10. 10. Alizadeh M, Vasebi Y, Safaie N. Microbial antagonists against plant pathogens in Iran: A review. Open Agric. 2020;5(1):404–40. https://doi.org/10.1515/opag-2020-0031
  11. 11. Sindhu SS, Rakshiya YS, Sahu G. Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technol. 2009;3(1):10–21.
  12. 12. Stirling GR. Biological control of plant-parasitic nematodes. In: Stirling GR, editor. Diseases of nematodes. Boca Raton: CRC Press; 2018. p. 103–50. https://doi.org/10.1201/9781351071468-9
  13. 13. Abd-Elgawad M. Biological control agents of plant-parasitic nematodes. Egypt J Biol Pest Control. 2016;26(2):423–9.
  14. 14. Li J, Zou C, Xu J, Ji X, Niu X, Yang J, et al. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol. 2015;53:67–95. https://doi.org/10.1146/annurev-phyto-080614-120336
  15. 15. Kassam R, Kamil D, Rao U. Caenorhabditis elegans as bait for isolating promising biocontrol fungi against Meloidogyne incognita from soils across India. Indian Phytopathol. 2021;74:739–52. https://doi.org/10.1007/s42360-021-00354-y
  16. 16. Murslain M, Javed N, Khan SA, Khan HU, Abbas H, Kamran M. Combined efficacy of Moringa oleifera leaves and a fungus, Trichoderma harzianum against Meloidogyne javanica on eggplant. Pak J Zool. 2014;46(3):827–32.
  17. 17. Araújo JV, Braga FR, Mendoza-de-Gives P, Paz-Silva A, Vilela VLR. Recent advances in the control of helminths of domestic animals by helminthophagous fungi. Parasitologia. 2021;1(3):168–76. https://doi.org/10.3390/parasitologia1030018
  18. 18. dos Santos Fonseca J, Altoé LSC, de Carvalho LM, de Freitas Soares FE, Braga FR, de Araújo JV. Nematophagous fungus Pochonia chlamydosporia to control parasitic diseases in animals. Appl Microbiol Biotechnol. 2023;107(12):3859–68. https://doi.org/10.1007/s00253-023-12525-0
  19. 19. Hallmann J, Davies KG, Sikora R. Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL, editors. Root-knot nematodes. Wallingford UK: CABI; 2009. p. 380–411. https://doi.org/10.1079/9781845934927.0380
  20. 20. Stirling GR. Biological control of plant-parasitic nematodes: soil ecosystem management in sustainable agriculture. Wallingford UK: CABI; 2014. https://doi.org/10.1079/9781780644158.0000
  21. 21. Peiris PUS, Li Y, Brown P, Xu C. Fungal biocontrol against Meloidogyne spp. in agricultural crops: A systematic review and meta-analysis. Biol Control. 2020;144:104235. https://doi.org/10.1016/j.biocontrol.2020.104235
  22. 22. Flores Francisco BG, Ponce IM, Plascencia Espinosa MÁ, Mendieta Moctezuma A, López y López VE. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi. World J Microbiol Biotechnol. 2021;37(10):180. https://doi.org/10.1007/s11274-021-03151-x
  23. 23. Darling E, Palmisano A, Chung H, Quintanilla-Tornel M. A new biological product shows promising control of the northern root-knot nematode, Meloidogyne hapla, in greenhouse tomatoes. J Nematol. 2023;55(1). https://doi.org/10.2478/jofnem-2023-0023
  24. 24. Wesemael W, Viaene N, Moens M. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology. 2011;13(1):3–16. https://doi.org/10.1163/138855410X526831
  25. 25. Manzanilla-López R, Esteves I, Powers S, Kerry B. Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Ann Appl Biol. 2011;159(1):118–29. https://doi.org/10.1111/j.1744-7348.2011.00479.x
  26. 26. Tobin J, Haydock P, Hare M, Woods S, Crump D. Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallida and G. rostochiensis) in potato crops grown under UK field conditions. Biol Control. 2008;46(2):194–201.
  27. 27. Kerry B, Kirkwood I, De Leij F, Barba J, Leijdens M, Brookes P. Growth and survival of Verticillium chlamydosporium Goddard, a parasite of nematodes, in soil. Biocontrol Sci Technol. 1993;3(3):355–65. https://doi.org/10.1080/09583159309355290
  28. 28. Zare R, Gams W, Evans H. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia. 2001;73(1/2):51-86. https://doi.org/10.1127/nova.hedwigia/73/2001/51
  29. 29. Hidalgo-Diaz L, Bourne J, Kerry B, Rodríguez M. Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: isolation and screening. Int J Pest Manage. 2000;46(4):277–84. https://doi.org/10.1080/09670870050206046
  30. 30. Kerry B, Crump D. Observations on fungal parasites of females and eggs of the cereal cyst-nematode, Heterodera avenae and other cyst nematodes. Nematologica. 1977;23(2):193-201. https://doi.org/10.1163/187529277x00543
  31. 31. Swarnakumari N, Kalaiarasan P. Mechanism of nematode infection by fungal antagonists, Purpureocillium lilacinum (Thom) Samson and Pochonia chlamydosporia (Goddard) Zare & Gams 2001. Pest Manag Hortic Ecosyst. 2017;23(2):165-9.
  32. 32. Escudero N, Marhuenda-Egea FC, Ibanco-Cañete R, Zavala-González EA, Lopez-Llorca LV. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics. 2014;10:788-804. https://doi.org/10.1007/s11306-014-0632-3
  33. 33. Li S, Wang D, Gong J, Zhang Y. Individual and combined application of nematophagous fungi as biological control agents against gastrointestinal nematodes in domestic animals. Pathogens. 2022;11(2):172. https://doi.org/10.3390/pathogens11020172
  34. 34. Ferraz C, Soares F, Senna C, Silva L, Araujo J, Moreira T, et al. Interaction of the nematophagous fungus Pochonia chlamydosporia on eggs of Spartocera dentiventris (Berg)(Hemiptera: Coreidae) under laboratory conditions. Braz J Biol. 2020;81:1122-4. https://doi.org/10.1590/1519-6984.231550
  35. 35. De Leij FA, Kerry BR. The nematophagous fungus Verticilium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Revue Nematol. 1991;14(1):157-64.
  36. 36. Bontempo A, Fernandes R, Lopes J, Freitas L, Lopes E. Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australas Plant Pathol. 2014;43:421-4. https://doi.org/10.1016/j.apsoil.2019.103397
  37. 37. dos Santos MV, Esteves I, Kerry B, Abrantes I. Interactions between Pochonia chlamydosporia and Meloidogyne chitwoodi in a crop rotation scheme. Nematropica. 2014;44(1):37-46.
  38. 38. Xavier DM, Dallemole-Giaretta R, Freitas LGd, Lopes EA, Gardiano CG, Ferraz S. Combination of isolates of Pochonia chlamydosporia for the control of Meloidogyne javanica in tomato. Chil J Agr Anim Sci. 2017;33(1):24-7. https://doi.org/10.4067/S0719-38902017005000103
  39. 39. De Leij F, Kerry B, Dennehy J. Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in pot and micro-plot tests. Nematologica. 1993;39(1-4):115-26. https://doi.org/10.1163/187529293X00097
  40. 40. Nasu ÉdGC, Amora DX, Monteiro TSA, Alves PS, de Podestá GS, Ferreira FC, et al. Pochonia chlamydosporia applied via seed treatment for nematode control in two soil types. Crop Prot. 2018;114:106-12. https://doi.org/10.1016/j.cropro.2018.08.010
  41. 41. Mauchline T, Kerry B, Hirsch P. Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Appl Environ Microbiol. 2002;68(4):1846-53. https://doi.org/10.1128/AEM.68.4.1846-1853.2002
  42. 42. Kerry BR, Hirsch PR. Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In: Lopez-Llorca LV, Jansson HB, Maciá-Vicente JG, Duncan GH, editors. Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms. Dordrecht: Springer; 2011. p. 171-82. https://doi.org/10.1007/978-1-4020-9648-8_7
  43. 43. Bourne J, Kerry B. Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biol Biochem. 1998;31(1):75-84. https://doi.org/10.1016/S0038-0717(98)00107-2
  44. 44. Nagesh M, Javeed S, Ramanujam B, Rangeswaran R. Suitability of soil types for Paecilomyces lilacinus and Pochonia chlamydosporia and their performance against root-knot nematode, Meloidogyne incognita on Lycopersicon esculentum in glasshouse. Indian J Agr Sci. 2013;83:826-30.
  45. 45. Lopez-Llorca L, Bordallo J, Salinas J, Monfort E, Lopez-Serna M. Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron. 2002;33(1):61-7. https://doi.org/10.1016/S0968-4328(00)00070-6
  46. 46. Dallemole-Giaretta R, Freitas LGd, Lopes EA, Silva MdCSd, Kasuya MCM, Ferraz S. Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Sci Agron. 2015;37:417-23. https://doi.org/10.4025/actasciagron.v37i4.25042
  47. 47. Hildalgo-Diaz L, Kerry B. Integration of biological control with other methods of nematode management. In: Ciancio A, Mukerji KG, editors. Integrated management and biocontrol of vegetable and grain crops nematodes. Dordrecht: Springer; 2008. p. 29-49. https://doi.org/10.1007/978-1-4020-6063-2_2
  48. 48. Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, et al. Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol. 2013;45(1):1.
  49. 49. Sorribas F, Ornat C, Galeano M, Verdejo-Lucas S. Evaluation of a native and introduced isolate of Pochonia chlamydosporia against Meloidogyne javanica. Biocontrol Sci Technol. 2003;13(8):707-14. https://doi.org/10.1080/09583150310001606282
  50. 50. Bouchagier P. Survival of Root-Knot nematodes and their egg-parasitic fungus Pochonia chlamydosporia (Goddard) on weed roots. J Plant Sci. 2018;2(2):95-105. https://doi.org/10.25177/JPS.2.2.4
  51. 51. de Souza Gouveia A, Monteiro TSA, Luiz PHD, Balbino HM, de Magalhães FC, de Moura VAS, et al. The nematophagous root endophyte Pochonia chlamydosporia alters tomato metabolome. Rhizosphere. 2022;22:100531. https://doi.org/10.1016/j.rhisph.2022.100531
  52. 52. De Leij F, Dennehy J, Kerry B. The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica. 1992;38:112-22. https://doi.org/10.1163/187529292X00090
  53. 53. Bourne J, Kerry B, De Leij F. Methods for the study of Verticillium chlamydosporium in the rhizosphere. J Nematol. 1994;26(4S):587.
  54. 54. Zavala-Gonzalez EA, Escudero N, Lopez-Moya F, Aranda-Martinez A, Exposito A, Ricaño-Rodríguez J, et al. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann Appl Biol. 2015;166(3):472-83. https://doi.org/10.1111/aab.12199.
  55. 55. Luambano N, Kimenju J, Narla R, Waceke J. Colonisation of the Rhizosphere of plants which are poor host to root-knot nematodes by the biological agent Pochonia chlamydosporia. 2011.
  56. 56. Bourne JM, Kerry B, De Leij F. The importance of the host plant on the interaction between root-knot nematodes Meloidogyne spp. and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Sci Technol. 1996;6(4):539-48. https://doi.org/10.1080/09583159631172
  57. 57. Coutinho RR, Pacheco PVM, Monteiro TSA, Balbino HM, Moreira BC, de Freitas LG. Root colonization and growth promotion of cover crops by Pochonia chlamydosporia. Rhizosphere. 2021;20:100432. https://doi.org/10.1016/j.rhisph.2021.100432
  58. 58. Affokpon A, Coyne DL, De Proft M, Coosemans J. In vitro growth characterization and biocontrol potential of naturally occurring nematophagous fungi recovered from root-knot nematode infested vegetable fields in Benin. Int J Pest Manage. 2015;61(4):273-83. https://doi.org/10.1080/09670874.2015.1043971
  59. 59. Arevalo J, Hidalgo-Díaz L, Martins I, Souza JF, Castro JMC, Carneiro RMD, et al. Cultural and morphological characterization of Pochonia chlamydosporia and Lecanicillium psalliotae isolated from Meloidogyne mayaguensis eggs in Brazil. Trop Plant Pathol. 2009;34:158-63. https://doi.org/10.1590/S1982-56762009000300004
  60. 60. Nagesh M, Hussaini S, Ramanujam B, Rangeswaran R. Molecular identification, characterization, variability and infectivity of Indian isolates of the nematophagous fungus Pochonia chlamydosporia. Nematologia Mediterranea. 2007.
  61. 61. Mo M, Xu C, Zhang K. Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia. 2005;159:381-7. https://doi.org/10.1007/s11046-004-5816-3
  62. 62. Luambano ND, Manzanilla-López RH, Kimenju JW, Powers SJ, Narla RD, Wanjohi WJ, et al. Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biol Control. 2015;80:23-9. https://doi.org/10.1016/j.biocontrol.2014.09.003
  63. 63. Swarnakumari N, Sindhu R, Thiribhuvanamala G, Rajaswaminathan V. Evaluation of oil dispersion formulation of nematophagus fungus, Pochonia chlamydosporia against root-knot nematode, Meloidogyne incognita in cucumber. J Asia-Pac Entomol. 2020;23(4):1283-7. https://doi.org/10.1016/j.aspen.2020.10.008
  64. 64. Vieira Dos Santos MC, Horta J, Moura L, Pires D, Conceicao I, Abrantes I, et al. An integrative approach for the selection of Pochonia chlamydosporia isolates for biocontrol of potato cyst and root knot nematodes. Phytopathol Mediterr. 2019;58(1):187-99. https://doi.org/10.14601/Phytopathol_Mediterr-23780
  65. 65. Uthoff J, Jakobs-Schönwandt D, Schmidt JH, Hallmann J, Dietz K-J, Patel A. Biological enhancement of the cover crop Phacelia tanacetifolia (Boraginaceae) with the nematophagous fungus Pochonia chlamydosporia to control the root-knot nematode Meloidogyne hapla in a succeeding tomato plant. BioControl. 2023;1-14. https://doi.org/10.1007/s10526-023-10222-5
  66. 66. Uthoff J, Jakobs-Schönwandt D, Dietz K-J, Patel A. Development of a seed treatment with pochonia chlamydosporia for biocontrol application. agriculture. 2024;14(1):138. https://doi.org/10.3390/agriculture14010138
  67. 67. Yang JI, Loffredo A, Borneman J, Becker JO. Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. J Nematol. 2012;44(1):67.
  68. 68. Siddiqui I, Atkins S, Kerry B. Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. Ann Appl Biol. 2009;155(1):131-41. https://doi.org/10.1111/j.1744-7348.2009.00328.x
  69. 69. Hidalgo-Díaz L, Franco-Navarro F, Grassi de Freitas L. Pochonia chlamydosporia microbial products to manage plant-parasitic Nematodes: Case Studies from Cuba, Mexico and Brazil. In: Manzanilla-López RH, Lopez-Llorca LV, editors. Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Cham: Springer; 2017. p. 311-42. https://doi.org/10.1007/978-3-319-59224-4_15
  70. 70. Khambay BPS, Bourne JM, Cameron S, Kerry BR, Zaki MJ. A nematicidal metabolite from Verticillium chlamydosporium. Pest Manag Sci. 2000;56(12):1098-9. https://doi.org/10.1002/1526-4998(200012)56:12<1098::AID-PS244>3.0.CO;2-H
  71. 71. Miyano R, Matsuo H, Nonaka K, Mokudai T, Niwano Y, Shiomi K, et al. Pochoniolides A and B, new antioxidants from the fungal strain Pochonia chlamydosporia var. spinulospora FKI-7537. J Biosci Bioeng. 2018;126(5):661-6. https://doi.org/10.1016/j.jbiosc.2018.05.003
  72. 72. Manzanilla-López RH, Lopez-Llorca LV. Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-59224-4
  73. 73. Niu X-M. Secondary metabolites from Pochonia chlamydosporia and other species of Pochonia. In: Manzanilla-López RH, Lopez-Llorca LV, editors. Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health. Cham: Springer; 2017. p. 131-68. https://doi.org/10.1007/978-3-319-59224-4_7
  74. 74. Lacatena F, Marra R, Mazzei P, Piccolo A, Digilio MC, Giorgini M, et al. Chlamyphilone, a novel Pochonia chlamydosporia metabolite with insecticidal activity. Molecules. 2019;24(4):750. https://doi.org/10.3390/molecules24040750
  75. 75. Larriba E, Jaime MD, Nislow C, Martín-Nieto J, Lopez-Llorca LV. Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res. 2015;128:665-78. https://doi.org/10.1007/s10265-015-0731-x
  76. 76. Pentimone I, Colagiero M, Ferrara M, Nigro F, Rosso LC, Ciancio A. Time-dependent effects of Pochonia chlamydosporia endophytism on gene expression profiles of colonized tomato roots. Appl Microbiol Biotechnol. 2019;103:8511-27. https://doi.org/10.1007/s00253-019-10058-z
  77. 77. Mingot-Ureta C, Lopez-Moya F, Lopez-Llorca LV. Isolates of the nematophagous fungus Pochonia chlamydosporia are endophytic in banana roots and promote plant growth. Agronomy. 2020;10(9):1299. https://doi.org/10.3390/agronomy10091299
  78. 78. Tolba SR, Rosso LC, Pentimone I, Colagiero M, Moustafa MM, Elshawaf II, et al. Root endophytism by Pochonia chlamydosporia affects defense-gene expression in leaves of monocot and dicot hosts under multiple biotic interactions. Plants. 2021;10(4):718. https://doi.org/10.3390/plants10040718
  79. 79. Ghahremani Z, Escudero N, Saus E, Gabaldón T, Sorribas FJ. Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Front Plant Sci. 2019;10:945. https://doi.org/10.3389/fpls.2019.00945
  80. 80. de Souza Gouveia A, Monteiro TSA, Balbino HM, de Magalhães FC, Ramos MES, Moura VAS, et al. Inoculation of Pochonia chlamydosporia triggers a defense response in tomato roots, affecting parasitism by Meloidogyne javanica. Microbiol Res. 2023;266:127242. https://doi.org/10.1016/j.micres.2022.127242
  81. 81. Rani CI, Muthuvel I, Veeraragavathatham D. Evaluation of 14 tomato genotypes for yield and root knot nematode resistance parameters. Pest Technol. 2009;3(1):76-80.
  82. 82. Ramzan M, Ahmed RZ, Khanum TA, Akram S, Jabeen S. Survey of root knot nematodes and RMi resistance to Meloidogyne incognita in soybean from Khyber Pakhtunkhwa, Pakistan. Eur J Plant Pathol. 2021;160:1-13. https://doi.org/10.1007/s10658-019-01740-z
  83. 83. Zinovieva S, Udalova ZV, Seiml-Buchinger V, Khasanov F. Gene expression of protease inhibitors in tomato plants with invasion by root-knot nematode Meloidogyne incognita and modulation of their activity with salicylic and jasmonic acids. Biol Bull. 2021;48:130-9. https://doi.org/10.1134/S1062359021440011
  84. 84. Santos MCVdAd. A challenge: biocontrol strategies for the management of potato cyst and rootknot nematodes [dissertation]. Coimbra: Universidade de Coimbra; 2013.
  85. 85. Vieira Dos Santos MC, Curtis RH, Abrantes I. The combined use of Pochonia chlamydosporia and plant defence activators - a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathol Mediterr. 2014:66-74. https://doi.org/10.14601/Phytopathol_Mediterr-12186
  86. 86. Khan M, Haque Z, Ahamad F, Zaidi B. Biomanagement of rice root-knot nematode Meloidogyne graminicola using five indigenous microbial isolates under pot and field trials. J Appl Microbiol. 2021;130(2):424-38. https://doi.org/10.1111/jam.14788
  87. 87. Escudero N, Lopez-Moya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A, Ros-Ibañez C, et al. Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front Plant Sci. 2017;8:1415. https://doi.org/10.3389/fpls.2017.01415
  88. 88. Varandas R, Egas C, Conceicao IL. Potato cyst nematodes: New solutions to an old problem. Crop Prot. 2020;137:105303. https://doi.org/10.1016/j.cropro.2020.105303
  89. 89. Silva SD, Carneiro RM, Faria M, Souza DA, Monnerat RG, Lopes RB. Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne enterolobii on tomato and banana. J Nematol. 2017;49(1):77-85. https://doi.org/10.21307/jofnem-2017-047
  90. 90. Messa VR, da Costa ACT, Kuhn OJ, Stroze CT. Nematophagous and endomycorrhizal fungi in the control of Meloidogyne incognita in soybean. Rhizosphere. 2020;15:100222. https://doi.org/10.1016/j.rhisph.2020.100222
  91. 91. Haj Nuaima R, Ashrafi S, Maier W, Heuer H. Fungi isolated from cysts of the beet cyst nematode parasitized its eggs and counterbalanced root damages. J Pest Sci. 2021;94:563-72. https://doi.org/10.1007/s10340-020-01254-2
  92. 92. Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, et al. Pochonins A- F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. J Nat Prod. 2003;66(6):829-37. https://doi.org/10.1021/np020556v
  93. 93. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, et al. Pochonins K-P: new radicicol analogues from Pochonia chlamydosporia var. chlamydosporia and their WNT-5A expression inhibitory activities. Tetrahedron. 2009;65(17):3446-53. https://doi.org/10.1016/j.tet.2009.02.027
  94. 94. Shinonaga H, Kawamura Y, Ikeda A, Aoki M, Sakai N, Fujimoto N, et al. The search for a hair-growth stimulant: new radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Lett. 2009;50(1):108-10. https://doi.org/10.1016/j.tetlet.2008.10.099
  95. 95. Bloch P, Tamm C, Bollinger P, Petcher TJ, Weber HP. Pseurotin, a new metabolite of Pseudeurotium ovalis STOLK having an unusual hetero-spirocyclic system.(Preliminary Communication). Helv Chim Acta. 1976;59(1):133-7. https://doi.org/10.1002/hlca.19760590114
  96. 96. Wang Y-l, Li L-f, Li D-x, Wang B, Zhang K, Niu X. Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. J Agric Food Chem. 2015;63(29):6577-87. https://doi.org/10.1021/acs.jafc.5b02596
  97. 97. Niu X-M, Wang Y-L, Chu Y-S, Xue H-X, Li N, Wei L-X, et al. Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J Agric Food Chem. 2010;58(2):828-34. https://doi.org/10.1021/jf903259n

Downloads

Download data is not yet available.