Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Molecular characterization and biocontrol potential of native rhizobacteria against Rhizoctonia solani in rice

DOI
https://doi.org/10.14719/pst.10340
Submitted
28 June 2025
Published
16-10-2025

Abstract

Sheath blight of rice, caused by Rhizoctonia solani Kuhn, ranks as the second most devastating fungal disease of rice after blast, leading to significant yield and quality losses. Current management strategies rely heavily on chemical fungicides, which pose serious environmental and health risks. In recent years, the use of native microbial antagonists has emerged as a promising, eco-friendly alternative for sustainable disease management. In the present study, 32 native rhizobacterial isolates comprising 30 actinobacteria and 2 fluorescent bacteria were obtained from the rhizosphere of healthy rice plants across major rice-growing regions of Karnataka. These isolates were evaluated for their antagonistic potential against a virulent R. solani isolate (RS4) under both in vitro and in vivo conditions. Among the isolates, the actinobacterial strains GVTAM 8, DWRAM 10 and the reference strain AUDT 502 exhibited significant inhibitory effects of 90.61 %, 88.38 % and 87.77 %, respectively, under in vitro conditions. Subsequent glasshouse experiments concluded that seed treatment followed by foliar spraying with GVTAM 8 and AUDT 502 was most effective in reducing sheath blight disease severity, recording lowest relative lesion height of 14.52 %, which was statistically on par with hexaconazole treatment. Molecular identification confirmed GVTAM 8 and DWRAM 10 as Streptomyces cinnabarinus and Streptomyces pseudogriseolus, respectively. The biocontrol activity of these actinobacteria makes them a suitable candidate for inclusion in disease management programs, thereby avoiding the complete dependency on chemicals for the management of sheath blight disease.

References

  1. 1. Tharakan M, Gite PA. Effect of zinc application on yield, growth characters and nutrient uptake by paddy (Oryza sativa L). J Pharmacogn Phytochem. 2018;7(5):1726-9.
  2. 2. Arvind M, Prashanthi SK. Comparative analysis of two predominant methods of sheath blight inoculation. J Crop Weed. 2023;19(1):158-63. https://doi.org/10.22271/09746315.2023.v19.i1.1674
  3. 3. Skamnioti P, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 2009;27:141-50. https://doi.org/10.1016/j.tibtech.2008.12.002
  4. 4. Yellareddygari SKR, Reddy MS, Kloepper JW, Lawrence KS, Fadamiro H. Rice sheath blight: a review of disease and pathogen management approaches. J Plant Pathol Microbiol. 2014;5:1-4.
  5. 5. Mohanan A, Prashanthi SK, Arun YP, Raghunandana A, Krishnaraj PU, Nayak SN, et al. Quantitative proteomic analysis deciphers mechanisms of sheath blight resistance in novel rice landrace against Rhizoctonia solani. Sci Rep. 2025;15(1):28242. https://doi.org/10.1038/s41598-025-85918-y
  6. 6. Kumar KVK, Reddy MS, Yellareddygari SK, Kloepper JW, Lawrence KS, Zhou XG, et al. Evaluation and selection of elite plant growth-promoting rhizobacteria for suppression of sheath blight of rice caused by Rhizoctonia solani in a detached leaf bio-assay. Int J Appl Biol Pharm Technol. 2011;2(1):488-95.
  7. 7. Kohl J, Postma J, Nicot P, Ruocco M, Blum B. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control. 2011;57:1-12. https://doi.org/10.1016/j.biocontrol.2010.12.004
  8. 8. Haque Z, Khan MR. Identification of multi-facial microbial isolates from the rice rhizosphere and their biocontrol activity against Rhizoctonia solani AG1-IA. Biol Control. 2021;161:104640. https://doi.org/10.1016/j.biocontrol.2021.104640
  9. 9. Arifuzzaman M, Khatun MR, Rahman H. Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. Afr J Biotechnol. 2010;9(29):4615-9.
  10. 10. Williams ST, Cross T. Chapter XI actinomycetes. In: Methods in microbiology. Vol. 4. Academic Press; 1971:295-334. https://doi.org/10.1016/S0580-9517(09)70016-9
  11. 11. Suryawanshi PP, Krishnaraj PU, Suryawanshi MP. Evaluation of actinobacteria for biocontrol of sheath blight in rice. J Pharmacogn Phytochem. 2020;9:371-6.
  12. 12. Vincent JM. Distribution of fungal hyphae in the presence of certain inhibitors. Nature. 1947;150:850-3. https://doi.org/10.1038/159850b0
  13. 13. Getha K, Vikineswary S, Wong WH, Seki T, Ward A, Goodfellow M. Evaluation of Streptomyces spp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot grown banana plantlets. J Ind Microbiol Biotechnol. 2005;32:24-32.
  14. https://doi.org/10.1007/s10295-004-0199-5
  15. 14. Weller DM, Cook RJ. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology. 1983;73(3):463-9. https://doi.org/10.1094/Phyto-73-463
  16. 15. Sharma NR, Teng PS, Olivares PM. Comparison of assessment methods for rice sheath blight disease. Philipp Phytopathol. 1990;26:20-4.
  17. 16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  18. 17. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd ed. Wiley; 1984:680.
  19. 18. Reedoy MAH, Shimu JF, Khan I, Shahi M, Hasan MH, Sarly SP, et al. Harnessing bacterial bioagents to control sheath blight of rice. Technol Agron. 2025;5:e010. https://doi.org/10.48130/tia-0025-0005
  20. 19. Rosenberg E, Sharon G, Zilber-Rosenberg I. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol. 2009;11:2959-62. https://doi.org/10.1111/j.1462-2920.2009.01995.x
  21. 20. Kloepper JW. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria; Angers, France. Station de Pathologie Végétale et Phytobacteriologie, INRA; 1978.
  22. 21. Mohanan A, Nigam R, Yeliya P, Daniel GR, Devi NO, Sahu R, et al. The role of plant microbiomes in suppressing soilborne pathogens: a review. J Adv Microbiol. 2025;25(5):160-78. https://doi.org/10.9734/jamb/2025/v25i5942
  23. 22. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Res. 2017;3(1):1-8. https://doi.org/10.19080/IJESNR.2017.03.555601
  24. 23. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327-50. https://doi.org/10.1007/s11274-011-0979-9
  25. 24. Kumar A, Singh J. Biofilms forming microbes: diversity and potential application in plant-microbe interaction and plant growth. In: Yadav A, Singh J, Rastegari A, Yadav N, editors. Plant microbiomes for sustainable agriculture. Sustain Dev Biodivers. 2020;25:173.
  26. https://doi.org/10.1007/978-3-030-38453-1_6
  27. 25. Grey TRG, Williams ST. Microbial productivity in the soil. Soc Gen Microbiol. 1971;21:255-86.
  28. 26. Boughachiche F, Reghioua S, Zerizer H, Boulahrouf A. Antibacterial activity of rare species of Streptomyces against multidrug-resistant clinical isolates. Ann Biol Clin. 2012;70(2):169-74. https://doi.org/10.1684/abc.2012.0661
  29. 27. Harikrishnan H, Shanmugaiah V, Balasubramanian N, Sharma MP, Kotchoni SO. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J Microbiol Biotechnol. 2014;30(12):3149-61.
  30. https://doi.org/10.1007/s11274-014-1742-9
  31. 28. Boukaew S, Plubrukam A, Prasertsan P. Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biocontrol. 2013;58:471-82. https://doi.org/10.1007/s10526-013-9510-6
  32. 29. Subramanian K, Muniraj I, Uthandi S. Role of actinomycete-mediated nanosystem in agriculture. PGPA. 2016;16:233-47. https://doi.org/10.1007/978-981-10-0707-1_15
  33. 30. Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res. 2020;231:126374. https://doi.org/10.1016/j.micres.2019.126374
  34. 31. Knowles CJ. Microorganisms and cyanide. Bacteriol Rev. 1976;40:652-80.
  35. https://doi.org/10.1128/br.40.3.652-680.1976
  36. 32. Loper JE, Buyer JS. Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact. 1991;4:5-13. https://doi.org/10.1094/MPMI-4-005
  37. 33. Prabavathy VR, Mathivanan N, Murugesan K. Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol Control. 2006;39(3):313-9. https://doi.org/10.1016/j.biocontrol.2006.07.011
  38. 34. Yang CJ, Huang TP, Huang JW. Field sanitation and foliar application of Streptomyces padanus PMS-702 for the control of rice sheath blight. Plant Pathol J. 2021;37(1):57. https://doi.org/10.5423/PPJ.OA.12.2020.0227
  39. 35. Nejad MS, Najafabadi NS, Aghighi S, Bonjar AHS, Murtazova KMS, Nakhaev MR, et al. Investigating the potential of Streptomyces spp. in suppression of Rhizoctonia solani (AG1-IA) causing rice sheath blight disease in northern Iran. Agronomy. 2022;12(10):2292. https://doi.org/10.3390/agronomy12102292
  40. 36. Jangra B, Dwibedi V, Kaur G, Bhadrecha P. Decoding genomic potential of Streptomyces spp. for sustainable environment and industries. S Afr J Bot. 2025;184:480-94. https://doi.org/10.1016/j.sajb.2025.06.022
  41. 37. Santos-Beneit F, Ceniceros A, Nikolaou A, Salas JA, Gutierrez-Merino J. Identification of antimicrobial compounds in two Streptomyces sp. strains isolated from beehives. Front Microbiol. 2022;13:742168. https://doi.org/10.3389/fmicb.2022.742168
  42. 38. Zhang L, Liu Z, Wang Y, Zhang J, Wan S, Huang Y, et al. Biocontrol potential of endophytic Streptomyces malaysiensis 8ZJF-21 from medicinal plant against banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4. Front Plant Sci. 2022;13:874819. https://doi.org/10.3389/fpls.2022.874819
  43. 39. Hu D, Li S, Li Y, Peng J, Wei X, Ma J, et al. Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Sci Rep. 2020;10:20132. https://doi.org/10.1038/s41598-020-76887-5

Downloads

Download data is not yet available.