Review Articles
Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture
A comprehensive view to deciphering of beneficial microbes’ status - A review
Department of Agronomy, Krishi Vigyan Kendra, Virdhachalam, Cuddalore 606 001, Tamil Nadu Agricultural University, Tamil Nadu, India
Department of Plant Pathology, Pushkaram College of Agriculture Sciences, Pudukkottai 622 303, Tamil Nadu, India
Department of Agricultural Botany (Genetics), Saba Basha (Faculty of Agriculture), Alexandria University, Alexandria 21531, Egypt
Department of Agronomy, Pushkaram College of Agriculture Sciences, Pudukkottai 622 303, Tamil Nadu, India
Department of Plant Pathology, Pushkaram College of Agriculture Sciences, Pudukkottai 622 303, Tamil Nadu, India
Department of Plant Breeding & Genetics, Cotton Research Station, Veppanthattai 621 116, Tamil Nadu, India
Abstract
Even with advancements in technology, rapid population growth, soil degradation, loss of soil nutrients and a scarcity of food supply coupled with high demand are intensifying global crises like mortality, malnutrition, the rise of new diseases and widespread hunger. Consequently, global scientific efforts are increasingly focusing on using microorganisms in agriculture and related fields, often referred to as "green" or "organic agriculture." This approach encompasses a wide range of microbial applications, including biocontrol agents, biofertilizers, biopesticides and fermenters. It also leverages synthetic additives (e.g., Saccharomyces, Penicillium, Aspergillus), microbes for bioenergy and biogas production (Proteobacteria, Actinomycetes, methanogenic Archaea) and for enhancing nutrient content in foods (e.g., rice, maize, wheat). Furthermore, microorganisms are crucial for developing vaccines and medicines (Clonorchis sinensis Streptomyces spp., Saccharomyces cerevisiae, Penicillium chrysogenum) and facilitating bioremediation processes (Agaricus bisporus, Ganoderma lucidum, Phlebia radiata). These beneficial microbes are utilized based on their unique biometabolic pathways, offering a natural and eco-friendly solution that helps maintain food safety and ecological balance.
References
- 1. White RR, Gleason CB. Global human-edible nutrient supplies, their sources and correlations with agricultural environmental impact. Scientific Reports. 2022;12:1-10. http://doi.org/10.1038/s41598-022-21135-1
- 2. Manzoor Shah A, Mustafa Khan I, Tajamul Islam S, Ahmed Bangroo S, Afaq Kirmani N, Nazir S, et al. Soil microbiome: A treasure trove for soil health sustainability under changing climate. Land. 2022;11:1-20. https://doi.org/10.3390/land11111887
- 3. Sharma P, Yadav P, Chauhan NS. Bacteria. In: Pandey R, Sethuraman R, editors. Pathogens and environmental impact on life forms. Cham: Springer; 2024. p. 37-64. https://doi.org/10.1007/ 978-3-031-70088-0_3
- 4. Dhingra G, Saxena A, Nigam A, Hira P, Singhvi N, Anand S, et al. Microbial world: recent developments in health, agriculture and environmental sciences. Indian Journal of Microbiology. 2021;61(12):111-5. https://doi.org/10.1007/s12088-021-00931-9
- 5. Chalot M, Puschenreiter M. Editorial: Exploring plant rhizosphere phyllosphere and endosphere microbial communities to improve the management of polluted sites. Frontiers in Microbiology. 2021;12:1-3. https://doi.org/10.3389/fmicb.2021.763566
- 6. Boukhatem ZF, Merabet C, Tsaki H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants?. Frontiers in Agronomy. 2022;4:1-19. https://doi.org/ 10.3389/ fagro.2022.849911
- 7. Chun-Juan D, Ling-Ling W, Li Q, Qing-Mao S. Bacterial communities in the rhizosphere phyllosphere and endosphere of tomato plants. PLoS One. 2019;14(11):e0223847. https://doi.org/10.1371/journal.pone.0223847
- 8. Bouremani N, Cherif-Silini H, Silini A, Bouket AC, Luptakova L, Alenezi F N, et al. Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water. 2023;15(3): 418. https://doi.org/10.3390/w15030418
- 9. Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S. Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology. 2021;27: 1-17. https://doi.org/10.1016/j.cpb.2021.100210
- 10. Ahmad Bhat B, Tariq L, Nissar S, Tajamul Islam S, Ul Islam S, Mangral Z, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbiology. 2022;15796:2717-41. http://doi.org/10.1111/jam.15796
- 11. Singh A, Kumar Yadav V, Chundawat R S, Soltane R, Awwad N S, Ibrahium H A, et al. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: a review. Frontiers in Bioengineering and Biotechnology. 2023;11:1-17. https://doi.org/10.3389/fbioe.2023.1099999
- 12. Truchetti B, Selbmann L, Gunde-Climerman N, Buzzini P, Sampaio JP, Zalar P. Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov. from European cold environments and Arctic region. Life. 2018;8(2):9. https://doi.org/10.3390 /life8020009
- 13. Aasfar A, Bargaz A, Yaaakoubi K, Hilali A, Bennis I, Zeroual Y, et al. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology. 2021;12:1-19. https://doi.org/10.3389/fmicb. 2021.628379
- 14. Perez-Garcia LA, Saenz-Mata J, Fortis-Hernandez M, Navvarro-Munoz CE, Palacio-Rodriguez R, Preciado-Rangel P. Plant growth promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy. 2023;13(2):315. https://doi.org/10.3390/agronomy13020315
- 15. Stella Ayilara M, Olanrewaju OS, Babalola OO, Odeyemi O. Waste management through composting: challenges and potentials. Sustainability. 2020;12(11):4456. https://doi.org/ 10.3390/su12114456
- 16. Imran A, Hakim S, Tariq M, Nawaz M, Laraib I, Gulzar U, et al. Diazotrophs for lowering nitrogen pollution crises: looking deep into roots. Frontiers in Microbiology. 2021;12:1-18. https://doi.org/10.3389/ fmicb.2021. 637815
- 17. Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, et al. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants. 2020;9(8):1011. https://doi.org/10.3390/plants9081011
- 18. Addo MA, Dos Santos PC. Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem. 2020;21(12):1749-59. http://doi.org/10.1002/ cbic.202000022
- 19. Koirala A, Brozel VS. Phylogeny of nitrogenase structural and assembly components reveals new insights into the origin and distribution of nitrogen fixation across bacteria and archaea. Microorganisms. 2021;9(8):1662. https://doi.org/10.3390/microorganisms90816 62
- 20. Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species ad symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Scientific Reports. 2021;11:8674. http://doi.org/10.1038/s41598-021-88051-8
- 21. Webster DA, Dikshit KL, Pagilla KR, Stark BC. The discovery of Vitreoscilla hemoglobin and early studies on its biochemical functions, the control of its expression and its use in practical applications. Microorganisms. 2021;9(8):1637. https://doi.org/10.3390/ microorganisms9081637
- 22. Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a source of plant growth promoting molecules: potential applications and possible operational mechanisms. Frontiers in Sustainable Food Systems. 2021;4:1-14. https://doi.org/10.3389/fsufs.2020.619676
- 23. Bechtaoui N, Kabir Rabiu M, Raklami A, Oufdou K, Hafidi M, Jemo M. Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science. 2021;12:1-20. https://doi.org/10.3389/fpls.2021.679916
- 24. Wan W, Qin Y, Wu H, Zuo W, He H, Tan J, et al. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Frontiers in Microbiology. 2020;11:1-15. https://doi.org/10.3389/fmicb.2020.00752
- 25. Tian J, Ge F, Zhang D, Deng S, Liu X. Role of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology. 2021; 10(2):158. https://doi.org/10.3390/biology10020158
- 26. Timofeeva AM, Galyamova M, Sedykh SE. Prospectus for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants. 2022a;11(16):2119. https://doi.org/10.3390/plants11162119
- 27. Yamagata A, Murata Y, Namba K, Terada T, Fukai S, Shirouzu M. Uptake mechanism of iron-phytosideophore from the soil based on the structure of yellow stripe transporter. Nature Communications. 2022;13:7180. http://doi.org/10.1038/s41467-022-34930-1
- 28. Ferreria MJ, Silva H, Cunha A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere. 2019; 29(4):409-20. https://doi.org/10.1016/S1002-0160(19)60810-6
- 29. Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraudi C, et al. Impact of bacterial siderophores on iron status and ionome in pea. Frontiers in Plant Science. 2020;11:1-12. https://doi.org/10.3389/fpls. 2020.00730
- 30. Timofeeva M, Galyamova M, Sedykh SE. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants. 2022b;11(22):3065. https://doi.org/ 10.3390/plants11223065
- 31. Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research. 2020;238:1-20. http://doi.org/10.1016/j.micres. 2020.126486
- 32. Rodrigues AMS, Lami R, Escoubeyrou K, Intertaglia L, Mazurek C, Doberva M, et al. Straight forward N-acyl homoserine lactone discovery and annotation by LC-MS/MS-based molecular networking. Journal of Proteome Research. 2022;21(3): 635-42. http://doi.org/ 10.1021/acs.jproteome.1c00849
- 33. Hartmann A, Kilink S, Rothballer M. Importance of N-acyl-homoserine lactone-based quorum sensing and quorum quenching in pathogen control and plant growth promotion. Pathogens. 2021;10(12):1561. http://doi.org/ 10.3390/pathogens10121561
- 34. Chiaranunt P, White JF. Plant beneficial bacteria and their potential applications in vertical farming systems. Plants. 2023;12(2):400. https://doi.org/10.3390/plants12020400
- 35. Xiang L, Harindintwali J, Wang F, Redmile-Gordon M, Chang SX, Fu Y, et al. Integrating biochar, bacteria and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science and Technology. 2022;56(23):16546-66. http://doi.org/10.1021/acs.est.2c02976
- 36. Lu X, Taylor AE, Myrold DD, Neufeld JD. Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal. 2020b;84:287-302. http://doi.org/10.1002/saj2.20029.
- 37. Li N, Euring D, Yung Cha J, Lin Z, Lu M, Huang L, et al. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science. 2021;11:1-11. https://doi.org/10.3389/fpls.2020.627969
- 38. Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Diaz GA, et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Frontiers in Plant Science. 2021;12:1-14. https://doi.org/ 10.3389/fpls.2021.799318
- 39. Sun W, Shahrajabian MH, Soleymani A. The role of plant-growth promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants. 2024;13(5):613. https://doi.org/10.3390/plants13050613
- 40. Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Asger Bhojiya A, Devendra J, et al. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology. 2022;13:1-19. https://doi.org/10.3389/fmicb.2022.916488
- 41. Orozco-Mosqued Ma, Santoyo G, Glick BR. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 2023;12(3):606. https://doi.org/10.3390/plants1 2030606
- 42. Bhat MA, Mishra AK, Jan S, Aamir Bhat M, Kamal MA, Rahman S, et al. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction. Plants. 2023;12(629):1-21.https://doi.org/10.3390/plants12030629.
- 43. Chen H, Jr D, Alonso JM, Stepanova AN. To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. Plants. 2021;11(33):1-25. http://doi.org/ 10.3390/ plants 11010033
- 44. Shekhawat K, Frohlich K, Garcia-Ramirez GX, Trapp MA, Hirt H. Ethylene: a master regulator of plant-microbe interactions under abiotic stresses. Cells. 2022;12(1):31. http://doi.org/10.3390/cells12010031
- 45. Duan B, Li Lin, Chen G, Su-Zhou C, Li Y, Merkeryan H, et al. 1-aminocyclopropane-1-carboxylate deaminase-producing plant growth promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L.). Frontiers in Plant Science. 2021;12:1-15. https://doi.org/10.3389/fpls.2021.706990
- 46. Ashfagul Haque AN, Kamal Uddin Md, Sulaiman MF, Mohd Amin A, Hossain M, Zaibon S, et al. Assessing the increase in soil moisture storage capacity and nutrient enhancement of different amendments in paddy soil. Agriculture. 2021;11(1):44. https://doi.org/10.3390/agriculture11010044
- 47. Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy. 2020;10(7):938. https://doi.org/10.3390/agronomy 10070938
- 48. Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology. 2019;10:1-17. https://doi.org/10.3389/fmicb.2019.01506
- 49. Backer R, Rokem S, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. 2018;9:1-17. https://doi.org/10.3389/fpls.2018.01473
- 50. Saeed Q, Xiukang W, Haider F, Kucerik J, Mumtaz MZ, Holatko J, et al. Rhizosphere bacteria in plant growth promotion, biocontrol and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. International Journal of Molecular Sciences. 2021; 22(19):10529. http://doi.org/10.3390/ijms221910529
- 51. Benitez-Chao DF, Leon-Buitimea A, Lerma-Escalera JA, Morones-Ramirez JR. Bacteriocins: an overview of antimicrobial, toxicity and assessment by in vivo models. Frontiers in Microbiology. 2021;12:1-18. https://doi.org/10.3389/fmicb.2021.630695
- 52. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria and clinical pathogens. Frontiers in Microbiology. 2018;9:1-21. https://doi.org/10.3389/fmicb. 2018.02928
- 53. Riseh R, Vatankhah M, Hassanisaadi M, Barka E. Unveiling the role of hydrolytic enzymes from soil biocontrol bacteria in sustainable phytopathogen management. Frontiers in Bioscience. 2024;29(3):105. http://doi.org/ 10.31083/j.fbl2903105
- 54. Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants. 2022;11(3):386. https://doi.org/10.3390/plants 11030386
- 55. Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods. 2021;10(1):69. http://doi.org/10.3390/foods 10010069
- 56. Clark DP, Pazdernik NJ. Biological warfare: infectious disease and bioterrorism. Biotechnology. 2016;687-719. http://doi.org/10.1016/B978-0-12-385015-7.00022-3
- 57. Kumar D, Yadav A, Ahmad R, Dwivedi U, Yadav K. CRISPR-based genome editing for nutrient enrichment in crops: a promising approach toward global food security. Frontiers in Genetics. 2022;13:1-12. https://doi.org/10.3389/fgene.2022.932859
- 58. Lu P, Sun Q, Fu P, Li K, Liang X, Xi Z. Wolbachia inhibits binding of dengue and Zika viruses to mosquito cells. Frontiers in Microbiology. 2020a;11:1-12. https://doi.org/ 10.3389/fmicb.2020.01750
- 59. Liu W, Gao Y, Zhou Y, Yu F, Li X, Zhang N. Mechanism of Cordyceps sinensis and its extracts in the treatment of diabetic kidney disease: a review. Frontiers in Pharmacology. 2022;13:1-14. http://doi.org/10.3389/fphar.2022.881835
- 60. Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, et al. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: a review. Antioxidants. 2023;12(11):1907. https://doi.org/10.3390/antiox12111907
- 61. Ahmad M, Pataczek L, Hilger TH, Zahir Z, Hussain A, Rasche F, et al. Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology. 2018;9:1-26. https://doi.org/10.3389/fmicb. 2018.02992
- 62. Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications and challenges. Biotechnology for Biofuels. 2022;14(5):1-22. https://doi.org/10.1186/s13068-020-01853-2
- 63. Callens K, Fontaine F, Sanz Y, Bogdanski A, Hondt KD, Lange L, et al. Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agri food systems’ sustainability. Frontiers in Sustainable Food Systems. 2022;6:1-7. https://doi.org/10.3389/ fsufs.2022.1047765
- 64. Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants. 2022;11(23):3200. https://doi.org/10.3390/plants11233200
- 65. Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, Tariq M, et al. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation and phytoremediation. Plant Stress. 2023;10:1-12. https://doi.org/ 10.1016/j.stress.2023.100283
Downloads
Download data is not yet available.