Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

A comprehensive view to deciphering of beneficial microbes’ status - A review

DOI
https://doi.org/10.14719/pst.10351
Submitted
29 June 2025
Published
18-08-2025

Abstract

Even with advancements in technology, rapid population growth, soil degradation, loss of soil nutrients and a scarcity of food supply coupled with high demand are intensifying global crises like mortality, malnutrition, the rise of new diseases and widespread hunger. Consequently, global scientific efforts are increasingly focusing on using microorganisms in agriculture and related fields, often referred to as "green" or "organic agriculture." This approach encompasses a wide range of microbial applications, including biocontrol agents, biofertilizers, biopesticides and fermenters. It also leverages synthetic additives (e.g., Saccharomyces, Penicillium, Aspergillus), microbes for bioenergy and biogas production (Proteobacteria, Actinomycetes, methanogenic Archaea) and for enhancing nutrient content in foods (e.g., rice, maize, wheat). Furthermore, microorganisms are crucial for developing vaccines and medicines (Clonorchis sinensis Streptomyces spp., Saccharomyces cerevisiae, Penicillium chrysogenum) and facilitating bioremediation processes (Agaricus bisporus, Ganoderma lucidum, Phlebia radiata). These beneficial microbes are utilized based on their unique biometabolic pathways, offering a natural and eco-friendly solution that helps maintain food safety and ecological balance.

References

  1. 1. White RR, Gleason CB. Global human-edible nutrient supplies, their sources and correlations with agricultural environmental impact. Scientific Reports. 2022;12:1-10. http://doi.org/10.1038/s41598-022-21135-1
  2. 2. Manzoor Shah A, Mustafa Khan I, Tajamul Islam S, Ahmed Bangroo S, Afaq Kirmani N, Nazir S, et al. Soil microbiome: A treasure trove for soil health sustainability under changing climate. Land. 2022;11:1-20. https://doi.org/10.3390/land11111887
  3. 3. Sharma P, Yadav P, Chauhan NS. Bacteria. In: Pandey R, Sethuraman R, editors. Pathogens and environmental impact on life forms. Cham: Springer; 2024. p. 37-64. https://doi.org/10.1007/ 978-3-031-70088-0_3
  4. 4. Dhingra G, Saxena A, Nigam A, Hira P, Singhvi N, Anand S, et al. Microbial world: recent developments in health, agriculture and environmental sciences. Indian Journal of Microbiology. 2021;61(12):111-5. https://doi.org/10.1007/s12088-021-00931-9
  5. 5. Chalot M, Puschenreiter M. Editorial: Exploring plant rhizosphere phyllosphere and endosphere microbial communities to improve the management of polluted sites. Frontiers in Microbiology. 2021;12:1-3. https://doi.org/10.3389/fmicb.2021.763566
  6. 6. Boukhatem ZF, Merabet C, Tsaki H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants?. Frontiers in Agronomy. 2022;4:1-19. https://doi.org/ 10.3389/ fagro.2022.849911
  7. 7. Chun-Juan D, Ling-Ling W, Li Q, Qing-Mao S. Bacterial communities in the rhizosphere phyllosphere and endosphere of tomato plants. PLoS One. 2019;14(11):e0223847. https://doi.org/10.1371/journal.pone.0223847
  8. 8. Bouremani N, Cherif-Silini H, Silini A, Bouket AC, Luptakova L, Alenezi F N, et al. Plant growth-promoting rhizobacteria (PGPR): a rampart against the adverse effects of drought stress. Water. 2023;15(3): 418. https://doi.org/10.3390/w15030418
  9. 9. Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S. Rhizosphere microbiome manipulation for sustainable crop production. Current Plant Biology. 2021;27: 1-17. https://doi.org/10.1016/j.cpb.2021.100210
  10. 10. Ahmad Bhat B, Tariq L, Nissar S, Tajamul Islam S, Ul Islam S, Mangral Z, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbiology. 2022;15796:2717-41. http://doi.org/10.1111/jam.15796
  11. 11. Singh A, Kumar Yadav V, Chundawat R S, Soltane R, Awwad N S, Ibrahium H A, et al. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: a review. Frontiers in Bioengineering and Biotechnology. 2023;11:1-17. https://doi.org/10.3389/fbioe.2023.1099999
  12. 12. Truchetti B, Selbmann L, Gunde-Climerman N, Buzzini P, Sampaio JP, Zalar P. Cystobasidium alpinum sp. nov. and Rhodosporidiobolus oreadorum sp. nov. from European cold environments and Arctic region. Life. 2018;8(2):9. https://doi.org/10.3390 /life8020009
  13. 13. Aasfar A, Bargaz A, Yaaakoubi K, Hilali A, Bennis I, Zeroual Y, et al. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology. 2021;12:1-19. https://doi.org/10.3389/fmicb. 2021.628379
  14. 14. Perez-Garcia LA, Saenz-Mata J, Fortis-Hernandez M, Navvarro-Munoz CE, Palacio-Rodriguez R, Preciado-Rangel P. Plant growth promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy. 2023;13(2):315. https://doi.org/10.3390/agronomy13020315
  15. 15. Stella Ayilara M, Olanrewaju OS, Babalola OO, Odeyemi O. Waste management through composting: challenges and potentials. Sustainability. 2020;12(11):4456. https://doi.org/ 10.3390/su12114456
  16. 16. Imran A, Hakim S, Tariq M, Nawaz M, Laraib I, Gulzar U, et al. Diazotrophs for lowering nitrogen pollution crises: looking deep into roots. Frontiers in Microbiology. 2021;12:1-18. https://doi.org/10.3389/ fmicb.2021. 637815
  17. 17. Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, Gopalakrishnan S, et al. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants. 2020;9(8):1011. https://doi.org/10.3390/plants9081011
  18. 18. Addo MA, Dos Santos PC. Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem. 2020;21(12):1749-59. http://doi.org/10.1002/ cbic.202000022
  19. 19. Koirala A, Brozel VS. Phylogeny of nitrogenase structural and assembly components reveals new insights into the origin and distribution of nitrogen fixation across bacteria and archaea. Microorganisms. 2021;9(8):1662. https://doi.org/10.3390/microorganisms90816 62
  20. 20. Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species ad symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Scientific Reports. 2021;11:8674. http://doi.org/10.1038/s41598-021-88051-8
  21. 21. Webster DA, Dikshit KL, Pagilla KR, Stark BC. The discovery of Vitreoscilla hemoglobin and early studies on its biochemical functions, the control of its expression and its use in practical applications. Microorganisms. 2021;9(8):1637. https://doi.org/10.3390/ microorganisms9081637
  22. 22. Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a source of plant growth promoting molecules: potential applications and possible operational mechanisms. Frontiers in Sustainable Food Systems. 2021;4:1-14. https://doi.org/10.3389/fsufs.2020.619676
  23. 23. Bechtaoui N, Kabir Rabiu M, Raklami A, Oufdou K, Hafidi M, Jemo M. Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science. 2021;12:1-20. https://doi.org/10.3389/fpls.2021.679916
  24. 24. Wan W, Qin Y, Wu H, Zuo W, He H, Tan J, et al. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Frontiers in Microbiology. 2020;11:1-15. https://doi.org/10.3389/fmicb.2020.00752
  25. 25. Tian J, Ge F, Zhang D, Deng S, Liu X. Role of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology. 2021; 10(2):158. https://doi.org/10.3390/biology10020158
  26. 26. Timofeeva AM, Galyamova M, Sedykh SE. Prospectus for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants. 2022a;11(16):2119. https://doi.org/10.3390/plants11162119
  27. 27. Yamagata A, Murata Y, Namba K, Terada T, Fukai S, Shirouzu M. Uptake mechanism of iron-phytosideophore from the soil based on the structure of yellow stripe transporter. Nature Communications. 2022;13:7180. http://doi.org/10.1038/s41467-022-34930-1
  28. 28. Ferreria MJ, Silva H, Cunha A. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere. 2019; 29(4):409-20. https://doi.org/10.1016/S1002-0160(19)60810-6
  29. 29. Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraudi C, et al. Impact of bacterial siderophores on iron status and ionome in pea. Frontiers in Plant Science. 2020;11:1-12. https://doi.org/10.3389/fpls. 2020.00730
  30. 30. Timofeeva M, Galyamova M, Sedykh SE. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants. 2022b;11(22):3065. https://doi.org/ 10.3390/plants11223065
  31. 31. Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research. 2020;238:1-20. http://doi.org/10.1016/j.micres. 2020.126486
  32. 32. Rodrigues AMS, Lami R, Escoubeyrou K, Intertaglia L, Mazurek C, Doberva M, et al. Straight forward N-acyl homoserine lactone discovery and annotation by LC-MS/MS-based molecular networking. Journal of Proteome Research. 2022;21(3): 635-42. http://doi.org/ 10.1021/acs.jproteome.1c00849
  33. 33. Hartmann A, Kilink S, Rothballer M. Importance of N-acyl-homoserine lactone-based quorum sensing and quorum quenching in pathogen control and plant growth promotion. Pathogens. 2021;10(12):1561. http://doi.org/ 10.3390/pathogens10121561
  34. 34. Chiaranunt P, White JF. Plant beneficial bacteria and their potential applications in vertical farming systems. Plants. 2023;12(2):400. https://doi.org/10.3390/plants12020400
  35. 35. Xiang L, Harindintwali J, Wang F, Redmile-Gordon M, Chang SX, Fu Y, et al. Integrating biochar, bacteria and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science and Technology. 2022;56(23):16546-66. http://doi.org/10.1021/acs.est.2c02976
  36. 36. Lu X, Taylor AE, Myrold DD, Neufeld JD. Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal. 2020b;84:287-302. http://doi.org/10.1002/saj2.20029.
  37. 37. Li N, Euring D, Yung Cha J, Lin Z, Lu M, Huang L, et al. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science. 2021;11:1-11. https://doi.org/10.3389/fpls.2020.627969
  38. 38. Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Diaz GA, et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Frontiers in Plant Science. 2021;12:1-14. https://doi.org/ 10.3389/fpls.2021.799318
  39. 39. Sun W, Shahrajabian MH, Soleymani A. The role of plant-growth promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants. 2024;13(5):613. https://doi.org/10.3390/plants13050613
  40. 40. Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Asger Bhojiya A, Devendra J, et al. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology. 2022;13:1-19. https://doi.org/10.3389/fmicb.2022.916488
  41. 41. Orozco-Mosqued Ma, Santoyo G, Glick BR. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 2023;12(3):606. https://doi.org/10.3390/plants1 2030606
  42. 42. Bhat MA, Mishra AK, Jan S, Aamir Bhat M, Kamal MA, Rahman S, et al. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction. Plants. 2023;12(629):1-21.https://doi.org/10.3390/plants12030629.
  43. 43. Chen H, Jr D, Alonso JM, Stepanova AN. To fight or to grow: the balancing role of ethylene in plant abiotic stress responses. Plants. 2021;11(33):1-25. http://doi.org/ 10.3390/ plants 11010033
  44. 44. Shekhawat K, Frohlich K, Garcia-Ramirez GX, Trapp MA, Hirt H. Ethylene: a master regulator of plant-microbe interactions under abiotic stresses. Cells. 2022;12(1):31. http://doi.org/10.3390/cells12010031
  45. 45. Duan B, Li Lin, Chen G, Su-Zhou C, Li Y, Merkeryan H, et al. 1-aminocyclopropane-1-carboxylate deaminase-producing plant growth promoting rhizobacteria improve drought stress tolerance in grapevine (Vitis vinifera L.). Frontiers in Plant Science. 2021;12:1-15. https://doi.org/10.3389/fpls.2021.706990
  46. 46. Ashfagul Haque AN, Kamal Uddin Md, Sulaiman MF, Mohd Amin A, Hossain M, Zaibon S, et al. Assessing the increase in soil moisture storage capacity and nutrient enhancement of different amendments in paddy soil. Agriculture. 2021;11(1):44. https://doi.org/10.3390/agriculture11010044
  47. 47. Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, Rossi L, et al. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy. 2020;10(7):938. https://doi.org/10.3390/agronomy 10070938
  48. 48. Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Frontiers in Microbiology. 2019;10:1-17. https://doi.org/10.3389/fmicb.2019.01506
  49. 49. Backer R, Rokem S, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. 2018;9:1-17. https://doi.org/10.3389/fpls.2018.01473
  50. 50. Saeed Q, Xiukang W, Haider F, Kucerik J, Mumtaz MZ, Holatko J, et al. Rhizosphere bacteria in plant growth promotion, biocontrol and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. International Journal of Molecular Sciences. 2021; 22(19):10529. http://doi.org/10.3390/ijms221910529
  51. 51. Benitez-Chao DF, Leon-Buitimea A, Lerma-Escalera JA, Morones-Ramirez JR. Bacteriocins: an overview of antimicrobial, toxicity and assessment by in vivo models. Frontiers in Microbiology. 2021;12:1-18. https://doi.org/10.3389/fmicb.2021.630695
  52. 52. Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria and clinical pathogens. Frontiers in Microbiology. 2018;9:1-21. https://doi.org/10.3389/fmicb. 2018.02928
  53. 53. Riseh R, Vatankhah M, Hassanisaadi M, Barka E. Unveiling the role of hydrolytic enzymes from soil biocontrol bacteria in sustainable phytopathogen management. Frontiers in Bioscience. 2024;29(3):105. http://doi.org/ 10.31083/j.fbl2903105
  54. 54. Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants. 2022;11(3):386. https://doi.org/10.3390/plants 11030386
  55. 55. Voidarou C, Antoniadou M, Rozos G, Tzora A, Skoufos I, Varzakas T, et al. Fermentative foods: microbiology, biochemistry, potential human health benefits and public health issues. Foods. 2021;10(1):69. http://doi.org/10.3390/foods 10010069
  56. 56. Clark DP, Pazdernik NJ. Biological warfare: infectious disease and bioterrorism. Biotechnology. 2016;687-719. http://doi.org/10.1016/B978-0-12-385015-7.00022-3
  57. 57. Kumar D, Yadav A, Ahmad R, Dwivedi U, Yadav K. CRISPR-based genome editing for nutrient enrichment in crops: a promising approach toward global food security. Frontiers in Genetics. 2022;13:1-12. https://doi.org/10.3389/fgene.2022.932859
  58. 58. Lu P, Sun Q, Fu P, Li K, Liang X, Xi Z. Wolbachia inhibits binding of dengue and Zika viruses to mosquito cells. Frontiers in Microbiology. 2020a;11:1-12. https://doi.org/ 10.3389/fmicb.2020.01750
  59. 59. Liu W, Gao Y, Zhou Y, Yu F, Li X, Zhang N. Mechanism of Cordyceps sinensis and its extracts in the treatment of diabetic kidney disease: a review. Frontiers in Pharmacology. 2022;13:1-14. http://doi.org/10.3389/fphar.2022.881835
  60. 60. Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol BS, et al. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: a review. Antioxidants. 2023;12(11):1907. https://doi.org/10.3390/antiox12111907
  61. 61. Ahmad M, Pataczek L, Hilger TH, Zahir Z, Hussain A, Rasche F, et al. Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology. 2018;9:1-26. https://doi.org/10.3389/fmicb. 2018.02992
  62. 62. Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications and challenges. Biotechnology for Biofuels. 2022;14(5):1-22. https://doi.org/10.1186/s13068-020-01853-2
  63. 63. Callens K, Fontaine F, Sanz Y, Bogdanski A, Hondt KD, Lange L, et al. Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agri food systems’ sustainability. Frontiers in Sustainable Food Systems. 2022;6:1-7. https://doi.org/10.3389/ fsufs.2022.1047765
  64. 64. Wang G, Ren Y, Bai X, Su Y, Han J. Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants. 2022;11(23):3200. https://doi.org/10.3390/plants11233200
  65. 65. Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, Tariq M, et al. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation and phytoremediation. Plant Stress. 2023;10:1-12. https://doi.org/ 10.1016/j.stress.2023.100283

Downloads

Download data is not yet available.