Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

A review on aflatoxins in oilseeds: Sustainable strategies for detoxification through physical and microbial approaches

DOI
https://doi.org/10.14719/pst.10380
Submitted
1 July 2025
Published
11-11-2025

Abstract

Aflatoxins (AFs) are highly toxic and carcinogenic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus, posing significant risks to food safety and public health. These mycotoxins commonly contaminate oilseeds such as peanuts, sunflower, cotton and maize seeds, particularly under warm and humid conditions. Controlling and reducing aflatoxin levels in these products is critical to ensuring food safety and complying with international regulatory standards. This review provides a comprehensive overview of current strategies for aflatoxin degradation in oilseeds, with a particular emphasis on physical and microbial approaches. Physical methods including thermal treatment, ammoniation, irradiation and advanced radiation techniques have been explored for their effectiveness in reducing aflatoxin levels. Microbial strategies involving specific bacteria, fungi and their enzymatic systems offer environmentally friendly and biologically based solutions for detoxification. The review critically examines the efficacy, mechanisms of action and limitations of each approach, highlighting the key factors that influence their success in practical applications. Moreover, it discusses the advantages and challenges associated with integrating these methods into existing food processing systems, considering factors such as cost-effectiveness, preservation of nutritional quality, regulatory acceptance and scalability. Finally, the review identifies key areas for future research, emphasizing the need to develop more efficient, sustainable and industrially viable technologies for large-scale aflatoxin decontamination in oilseeds. These advancements are essential for enhancing global food safety, protecting public health and supporting international trade.

References

  1. 1. Mekouar MA. Food and Agriculture Organization of the United Nations (FAO). Yearb Int Environ Law. 2023;34(1):yvae031. https://doi.org/10.1093/yiel/yvae031
  2. 2. Estimates TA. Directorate of Economics and Statistics (DES). Ministry of Agriculture and Farmers Welfare (MoA & FW), India. 2020.
  3. 3. Chauhan JS, Choudhury PR, Pal S, Singh KH. An overview of oilseeds and oil scenario, seed chain and strategy to energize seed production. Indian J Agric Sci. 2021;91(2):183-92. https://doi.org/10.56093/ijas.v91i2.111573
  4. 4. Sharma KK, Singh US, Sharma P, Kumar A, Sharma L. Seed treatments for sustainable agriculture. J Appl Nat Sci. 2015;7(1):521. https://doi.org/10.31018/jans.v7i1.641
  5. 5. Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4):e01495. https://doi.org/10.1016/j.heliyon.2019.e01495
  6. 6. Garuba T, AbdulRahaman AA, Olahan GS, Abdulkareem KA, Amadi JE. Effects of fungal filtrates on seed germination and leaf anatomy of maize seedlings (Zea mays L., Poaceae). J Appl Sci Environ Manage. 2014;18(4):662-67. https://doi.org/10.4314/jasem.v18i4.15
  7. 7. Pedraza LA, Bautista J, Uribe-Vélez D. Seed-borne Burkholderia glumae infects rice seedlings and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathol J. 2018;34(5):393. https://doi.org/10.5423/PPJ.OA.02.2018.0030
  8. 8. Jalili M, Jinap S, Noranizan MA. Aflatoxins and ochratoxin A reduction in black and white pepper by gamma radiation. Radiat Phys Chem. 2012;81(11):1786-88. https://doi.org/10.1016/j.radphyschem.2012.06.001
  9. 9. Natarajan KR, Rhee KC, Cater CM, Mattil KF. Distribution of aflatoxins in various fractions separated from raw peanuts and defatted peanut meal. J Am Oil Chem Soc. 1975;52:44-47. https://doi.org/10.1007/BF02901821
  10. 10. Park DL, Lee LS, Price RL, Pohland AE. Review of the decontamination of aflatoxins by ammoniation: current status and regulation. J Assoc Off Anal Chem. 1988;71(4):685-703. https://doi.org/10.1093/jaoac/71.4.685
  11. 11. Allameh A, Safamehr A, Mirhadi SA, Shivazad M, Razzaghi-Abyaneh M, Afshar-Naderi A. Evaluation of biochemical and production parameters of broiler chicks fed ammonia-treated aflatoxin-contaminated maize grains. Anim Feed Sci Technol. 2005;122(3-4):289-301. https://doi.org/10.1016/j.anifeedsci.2005.03.005
  12. 12. Ding X, Li P, Bai Y, Zhou H. Aflatoxin B1 in post-harvest peanuts and dietary risk in China. Food Control. 2012;23(1):143-48. https://doi.org/10.1016/j.foodcont.2011.06.026
  13. 13. Shapira R, Paster N, Menasherov M, Eyal O, Mett A, Meiron T, et al. Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli. Appl Environ Microbiol. 1997;63(3):990-95. https://doi.org/10.1128/aem.63.3.990-995.1997
  14. 14. Guchi E. Aflatoxin contamination in groundnut (Arachis hypogaea L.) caused by Aspergillus species in Ethiopia. J Appl Environ Microbiol. 2015;3(1):11-9.
  15. 15. Waliyar F, Kumar KV, Diallo M, Traore A, Mangala UN, Upadhyaya HD, et al. Resistance to pre-harvest aflatoxin contamination in ICRISAT's groundnut mini core collection. Eur J Plant Pathol. 2016;145:901-13. https://doi.org/10.1007/s10658-016-0879-9
  16. 16. Kasun BT, Vanniarachchy MP. Reduction of aflatoxin contamination in coconut oil using concentrated solar radiation. Food Chem Adv. 2023;3:100513. https://doi.org/10.1016/j.focha.2023.100513
  17. 17. Balsini MS, Dovom MR, Kadkhodaee R, Najafi MB, Yavarmanesh M. Effect of digestion and thermal processing on the stability of microbial cell-aflatoxin B1 complex. LWT. 2021;142:110994. https://doi.org/10.1016/j.lwt.2021.110994
  18. 18. Niu J, Li Y, Deng Y, Wei C, Jin J, Zhang H, et al. Degradation of aflatoxin B1 by X-ray irradiation. LWT. 2025;117384. https://doi.org/10.1016/j.lwt.2025.117384
  19. 19. Baoua IB, Amadou L, Ousmane B, Baributsa D, Murdock LL. PICS bags for post-harvest storage of maize grain in West Africa. J Stored Prod Res. 2014;58:20-8. https://doi.org/10.1016/j.jspr.2014.03.001
  20. 20. Vujcic I, Masic S. Preservation of hemp flour using high-energy ionizing radiation: The effect of gamma radiation on aflatoxin inactivation, microbiological properties and nutritional values. J Food Process Preserv. 2021;45(4):e15314. https://doi.org/10.1111/jfpp.15314
  21. 21. Zhang M, Jiao P, Wang X, Sun Y, Liang G, Xie X, et al. Evaluation of growth performance, nitrogen balance and blood metabolites of mutton sheep fed an ammonia-treated aflatoxin B1-contaminated diet. Toxins. 2022;14(5):361. https://doi.org/10.3390/toxins14050361
  22. 22. Mikityuk O, Nazarova T, Sinelnikov I, Shcherbakova L. Post-harvest biodegradation of aflatoxin B1 in rice grain and peanut seeds infected with Aspergillus flavus using a recombinant oxidase from Armillaria tabescens. In: International Conference on Agriculture Digitalization and Organic Production. Singapore: Springer Nature Singapore; 2024. p. 265-75. https://doi.org/10.1007/978-981-97-4410-7_22
  23. 23. Guan S, Zhou T, Yin Y, Xie M, Ruan Z, Young J. Microbial strategies to control aflatoxins in food and feed. World Mycotoxin J. 2011;4(4):413. https://doi.org/10.3920/WMJ2011.1290
  24. 24. Alberts JF, Gelderblom WC, Botha A, Van Zyl WH. Degradation of aflatoxin B1 by fungal laccase enzymes. Int J Food Microbiol. 2009;135(1):47-52. https://doi.org/10.1016/j.ijfoodmicro.2009.07.022
  25. 25. Wang J, Ogata M, Hirai H, Kawagishi H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett. 2011;314(2):164-49. https://doi.org/10.1111/j.1574-6968.2010.02158.x
  26. 26. Dini I, Alborino V, Lanzuise S, Lombardi N, Marra R, Balestrieri A, et al. Trichoderma enzymes for degradation of aflatoxin B1 and ochratoxin A. Molecules. 2022;27(12):3959. https://doi.org/10.3390/molecules27123959
  27. 27. Saeed MK, Anjum S, Zahra N, Shahzadi I, Huma Z, Khan A, et al. Determination of aflatoxin in various spice samples and its detoxification using black seed oil: A biological approach. Diet Factor J Nutr Food Sci. 2024;24-9. https://doi.org/10.54393/df.v5i2.134
  28. 28. Sipos P, Peles F, Brassó DL, Béri B, Pusztahelyi T, Pócsi I, et al. Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins. 2021;13(3):204. https://doi.org/10.3390/toxins13030204
  29. 29. Jaiswar R, Sarathchandra G, Shanmugam SA, Felix N, Narayanan AL. Assessment of total aflatoxin (AFB1, AFB2, AFG1 and AFG2) in fish feed and feedstuffs by using high-performance thin-layer chromatography. Compr Rev Food Sci Food Saf. 2022;20(3):2332-38. https://doi.org/10.22271/tpi.2022.v11.i9Sq.15535
  30. 30. Wang HB, Mo ZM, Yuan GW, Dai XD, Zhou SY, Khoo HE, et al. Degradation of aflatoxin B1 in peanut oil by ultraviolet-LED cold-light irradiation and structure elucidation of the degradation products. J Oleo Sci. 2023;72(4):473-80. https://doi.org/10.5650/jos.ess22354
  31. 31. Ramezani M, Varidi M, Hashemi M, Rezaie M. Evaluation of the physicochemical properties and aflatoxin levels of industrial and non-industrial sesame oil. Iran J Chem Chem Eng. 2022;41(10).
  32. 32. Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, et al. Mycotoxins affecting animals, foods, humans and plants: Types, occurrence, toxicities, action mechanisms, prevention and detoxification strategies - A revisit. Foods. 2021;10(6):1279. https://doi.org/10.3390/foods10061279
  33. 33. Jallow A, Xie H, Tang X, Qi Z, Li P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr Rev Food Sci Food Saf. 2021;20(3):2332-81. https://doi.org/10.1111/1541-4337.12734
  34. 34. Alameri MM, Kong ASY, Aljaafari MN, Ali HA, Eid K, Sallagi MA, et al. Aflatoxin contamination: An overview on health issues, detection and management strategies. Toxins. 2023;15(4):246. https://doi.org/10.3390/toxins15040246
  35. 35. Farahmandfar R, Tirgarian B. Degradation of aflatoxins and tocopherols in peanut (Arachis hypogaea): Effect of aflatoxin type, time and temperature of roasting. Dry Technol. 2020;38(16):2182-89. https://doi.org/10.1080/07373937.2019.1687513
  36. 36. Martins LM, Sant'Ana AS, Iamanaka BT, Berto MI, Pitt JI, Taniwaki MH. Kinetics of aflatoxin degradation during peanut roasting. Food Res Int. 2017;97:178-83. https://doi.org/10.1016/j.foodres.2017.03.052
  37. 37. Proctor AD, Ahmedna M, Kumar JV, Goktepe I. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Addit Contam. 2004;21(8):786-93. https://doi.org/10.1080/02652030410001713898
  38. 38. Patil H, Shah NG, Hajare SN, Gautam S, Kumar G. Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019;12(3):269-80. https://doi.org/10.3920/WMJ2018.2384
  39. 39. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, et al. Risk assessment of aflatoxins in food. EFSA J. 2020;18(3):e06040. https://doi.org/10.2903/j.efsa.2020.6040
  40. 40. FAO, WHO. Codex Alimentarius: General standard for contaminants and toxins in food and feed. CXS 193-1995. 1995.
  41. 41. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, et al. Guidance for the assessment of detoxification processes in feed. EFSA J. 2024;22(1):e8528. https://doi.org/10.2903/j.efsa.2024.8528
  42. 42. Park DL, Troxell TC. US perspective on mycotoxin regulatory issues. Mycotoxins Food Saf. 2002:277-85. https://doi.org/10.1007/978-1-4615-0629-4_29
  43. 43. Mutiga SK, Were V, Hoffmann V, Harvey JW, Milgroom MG, Nelson RJ. Extent and drivers of mycotoxin contamination: Inferences from a survey of Kenyan maize mills. Phytopathology. 2014;104(11):1221-31. https://doi.org/10.1094/PHYTO-01-14-0006-R
  44. 44. Mahmoud BS, Nannapaneni R, Chang S, Coker R. Effect of X-ray treatments on Escherichia coli O157:H7, Listeria monocytogenes, Shigella flexneri, Salmonella enterica and inherent microbiota on whole mangoes. Lett Appl Microbiol. 2016;62(2):138-44. https://doi.org/10.1111/lam.12518
  45. 45. Bozinou E, Athanasiadis V, Samanidis I, Govari M, Govaris A, Sflomos K, et al. Aflatoxin inactivation in gamma-ray-irradiated almonds. Appl Sci. 2024;14(24):11985. https://doi.org/10.3390/app142411985
  46. 46. Sebaei AS, Sobhy HM, Fouzy AS, Hussain OA. Occurrence of zearalenone in grains and its reduction by gamma radiation. Int J Environ Anal Chem. 2022;102(11):2503-11. https://doi.org/10.1080/03067319.2020.1756282
  47. 47. Jubeen F, Bhatti IA, Khan MZ, Zahoor-ul H, Shahid M. Effect of UVC irradiation on aflatoxins in groundnut (Arachis hypogaea) and tree nuts (Juglans regia, Prunus dulcis and Pistacia vera). J Chem Soc Pak. 2012;34(6):1366-74.
  48. 48. Wang B, Mahoney NE, Khir R, Wu B, Zhou C, Pan Z, et al. Degradation kinetics of aflatoxin B1 and B2 in solid medium by using pulsed light irradiation. J Sci Food Agric. 2018;98(14):5220-4. https://doi.org/10.1002/jsfa.9058
  49. 49. Abuagela MO, Iqdiam BM, Mostafa H, Gu L, Smith ME, Sarnoski PJ. Assessing pulsed light treatment on the reduction of aflatoxins in peanuts with and without skin. Int J Food Sci Technol. 2018;53(11):2567-75. https://doi.org/10.1111/ijfs.13851
  50. 50. Wang C, Li Z, Wang H, Qiu H, Zhang M, Li S, et al. Rapid biodegradation of aflatoxin B1 by metabolites of Fusarium sp. WCQ3361 with broad working temperature range and excellent thermostability. J Sci Food Agric. 2017;97(4):1342-48. https://doi.org/10.1002/jsfa.7872
  51. 51. Fernandez Juri MG, Dalcero AM, Magnoli CE. In vitro aflatoxin B1 binding capacity by two Enterococcus faecium strains isolated from healthy dog faeces. J Appl Microbiol. 2015;118(3):574-82. https://doi.org/10.1111/jam.12726
  52. 52. Verheecke C, Liboz T, Darriet M, Sabaou N, Mathieu F. In vitro interaction of actinomycetes isolates with Aspergillus flavus: Impact on aflatoxins B1 and B2 production. Lett Appl Microbiol. 2014;58(6):597-603. https://doi.org/10.1111/lam.12233
  53. 53. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol. 2001;67(7):3086-93. https://doi.org/10.1128/AEM.67.7.3086-3091.2001
  54. 54. Akbar A, Khan MI, Khan GI. Probiotics in biodegradation of microbial toxins: Principles and mechanisms. In: Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications. 2022. p.161-71. https://doi.org/10.1002/9781119702160.ch7
  55. 55. Eslahi N, Kowsari M, Zamani MR, Motallebi M. The profile change of defense pathways in Phaseolus vulgaris L. by biochemical and molecular interactions of Trichoderma harzianum transformants overexpressing a chimeric chitinase. Biol Control. 2021;152:104304. https://doi.org/10.1016/j.biocontrol.2020.104304
  56. 56. Madbouly AK, Rashad YM, Ibrahim MI, Elazab NT. Biodegradation of aflatoxin B1 in maize grains and suppression of its biosynthesis-related genes using endophytic Trichoderma harzianum AYM3. J Fungi. 2023;9(2):209. https://doi.org/10.3390/jof9020209
  57. 57. Söylemez T, Berger RG, Krings U, Yamaç M. Aflatoxin B1 (AFB1) biodegradation by a lignolytic phenoloxidase of Trametes hirsuta. Sci Rep. 2025;15(1):6330. https://doi.org/10.1038/s41598-025-90711-y
  58. 58. Xie Y, Wang W, Zhang S. Purification and identification of an aflatoxin B1 degradation enzyme from Pantoea sp. T6. Toxicon. 2019;157:35-42. https://doi.org/10.1016/j.toxicon.2018.11.290
  59. 59. Wang L, Huang W, Shen Y, Zhao Y, Wu D, Yin H, et al. Enhancing the degradation of aflatoxin B1 by co-cultivation of two fungi strains with the improved production of detoxifying enzymes. Food Chem. 2022;371:131092. https://doi.org/10.1016/j.foodchem.2021.131092
  60. 60. Suo J, Liang T, Zhang H, Liu K, Li X, Xu K, et al. Characteristics of aflatoxin B1 degradation by Stenotrophomonas acidaminiphila and its combination with black soldier fly larvae. Life. 2023;13(1):234. https://doi.org/10.3390/life13010234
  61. 61. Chen G, Fang QA, Liao Z, Xu C, Liang Z, Liu T, et al. Detoxification of aflatoxin B1 by a potential probiotic Bacillus amyloliquefaciens WF2020. Front Microbiol. 2022;13:891091. https://doi.org/10.3389/fmicb.2022.891091
  62. 62. Wang Y, Zhang H, Yan H, Yin C, Liu Y, Xu Q, et al. Effective biodegradation of aflatoxin B1 using the Bacillus licheniformis (BL010) strain. Toxins. 2018;10(12):497. https://doi.org/10.3390/toxins10120497
  63. 63. Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P. Investigation and characterization of Myroides odoratimimus strain 3J2MO aflatoxin B1 degradation. J Agric Food Chem. 2019;67(16):4595-602. https://doi.org/10.1021/acs.jafc.8b06810
  64. 64. Feng J, Cao L, Du X, Zhang Y, Cong Y, He J, et al. Biological detoxification of aflatoxin B1 by Enterococcus faecium HB2-2. Foods. 2024;13(12):1887. https://doi.org/10.3390/foods13121887
  65. 65. Sangare L, Zhao Y, Folly YM, Chang J, Li J, Selvaraj JN, et al. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins. 2014;6(10):3028-40. https://doi.org/10.3390/toxins6103028
  66. 66. Zhu Y, Xu Y, Yang Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J Hazard Mater. 2021;414:125569. https://doi.org/10.1016/j.jhazmat.2021.125569
  67. 67. Shu X, Wang Y, Zhou Q, Li M, Hu H, Ma Y, et al. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins. 2018;10(8):330. https://doi.org/10.3390/toxins10080330
  68. 68. Bhat ZR, Hakeem KR. Removal and detoxification of aflatoxins. In: Aflatoxins in Food: A Perspective. Cham: Springer Int Publ. 2022. p. 195-205. https://doi.org/10.1007/978-3-030-85762-2_9
  69. 69. Pandey V. Promising detoxification approaches to mitigate aflatoxins in foods and feeds. In: Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. IntechOpen; 2021. https://doi.org/10.5772/intechopen.96813
  70. 70. Fang L, Zhao B, Zhang R, Wu P, Zhao D, Chen J, et al. Occurrence and exposure assessment of aflatoxins in Zhejiang province, China. Environ Toxicol Pharmacol. 2022;92:103847. https://doi.org/10.1016/j.etap.2022.103847
  71. 71. Finotti E, Parroni A, Zaccaria M, Domin M, Momeni B, Fanelli C, et al. Aflatoxins are natural scavengers of reactive oxygen species. Sci Rep. 2021;11(1):16024. https://doi.org/10.1038/s41598-021-95325-8
  72. 72. Ramezani M, Varidi M, Hashemi M, Rezaie M. Evaluation of the physicochemical properties and aflatoxin levels of industrial and non-industrial sesame oil. Iran J Chem Chem Eng. 2022;41(10).
  73. 73. Wang C, Li J, Wang Q, Wu Q, Shi X. Fluorine-functionalized covalent organic framework as efficient solid phase extraction sorbent for adsorption of aflatoxins in nuts. J Hazard Mater. 2024;464:133017. https://doi.org/10.1016/j.jhazmat.2023.133017
  74. 74. Álvarez-Días F, Torres-Parga B, Valdivia-Flores AG, Quezada-Tristán T, Alejos-De La Fuente JI, Sosa-Ramírez J, et al. Aspergillus flavus and total aflatoxins occurrence in dairy feed and aflatoxin M1 in bovine milk in Aguascalientes, México. Toxins. 2022;14(5):292. https://doi.org/10.3390/toxins14050292
  75. 75. Schamann A, Schmidt-Heydt M, Geisen R, Kulling SE, Soukup ST. Formation of B- and M-group aflatoxins and precursors by Aspergillus flavus on maize and its implication for food safety. Mycotoxin Res. 2022;38(2):79-92. https://doi.org/10.1007/s12550-022-00452-4
  76. 76. Kortei NK, Annan T, Akonor PT, Richard SA, Annan HA, Wiafe-Kwagyan M, et al. Aflatoxins in randomly selected groundnuts (Arachis hypogaea) and its products from some local markets across Ghana: Human risk assessment and monitoring. Toxicol Rep. 2021;8:186-95. https://doi.org/10.1016/j.toxrep.2021.01.002
  77. 77. Ismail AM, Raza MH, Zahra N, Ahmad R, Sajjad Y, Khan SA. Aflatoxins in wheat grains: Detection and detoxification through chemical, physical and biological means. Life. 2024;14(4):535. https://doi.org/10.3390/life14040535
  78. 78. Saka HK, Bala I, Ahmad FU, Adamu AA, Yerima AK, Ibrahim AT, et al. Aflatoxin total and microbial contamination of grains, oil seeds, yam chips and fish sold in Maiduguri Market. Equity J Sci Technol. 2021;8(1):65-69. https://doi.org/10.4314/equijost.v8i1.10
  79. 79. Branà MT, Sergio L, Haidukowski M, Logrieco AF, Altomare C. Degradation of aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins. 2020;12(1):49. https://doi.org/10.3390/toxins12010049
  80. 80. Mohsen E, El-Metwally MA, Ibrahim AA, Soliman MI. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed (Arachis hypogaea L.) during storage. Sci Prog. 2023;106(2):00368504231176165. https://doi.org/10.1177/00368504231176165
  81. 81. Dong X, Zhang Q, Zhang Z, Yue X, Zhang L, Chen X, et al. Inhibitory effect of Enterobacter cloacae 3J1EC on Aspergillus flavus 3.4408 growth and aflatoxin production. World Mycotoxin J. 2020;13(2):259-66. https://doi.org/10.3920/WMJ2019.2480
  82. 82. Yousef H, Abd-Elsalam KA, Abdel-Momen SM. Endophytic fungi for reduction of mycotoxin contamination in crops. In: Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection. Singapore: Springer Nat Singapore; 2025. p.185-224. https://doi.org/10.1007/978-981-97-8804-0_7
  83. 83. Zhao LH, Guan S, Gao X, Ma QG, Lei YP, Bai XM, et al. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J Appl Microbiol. 2011;110(1):147-55. https://doi.org/10.1111/j.1365-2672.2010.04867.x
  84. 84. Peng Z, Liu Y, Zhang Y, Ai Z, Lei D, Xie Y, et al. Radio frequency roasting promotes the degradation of aflatoxin B1 and achieves better quality of peanuts (Arachis hypogaea L.). Food Control. 2024;158:110232. https://doi.org/10.1016/j.foodcont.2023.110232
  85. 85. Appugol KA, Mangang IB, Shanmugasundaram S, Manickam L. Radiofrequency heating: A novel thermal treatment on the quality of peanut during disinfestation of Caryedon serratus and its potential in reducing aflatoxin. J Food Process Preserv. 2022;46(11):e17029. https://doi.org/10.1111/jfpp.17029
  86. 86. Zhang ZS, Xie QF, Che LM. Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Appl Radiat Isot. 2018;139:224-30. https://doi.org/10.1016/j.apradiso.2018.05.003
  87. 87. Al-Bachir M. Evaluation of the effect of gamma irradiation on microbial, chemical and sensorial properties of peanut (Arachis hypogaea L.) seeds. Acta Sci Pol Technol Aliment. 2016;15(2):171-9. https://doi.org/10.17306/J.AFS.2016.2.17
  88. 88. Zhu Y, Xu Y, Yang Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J Hazard Mater. 2021;414:125569. https://doi.org/10.1016/j.jhazmat.2021.125569
  89. 89. Adebo OA, Njobeh PB, Sidu S, Tlou MG, Mavumengwana V. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains. Int J Food Microbiol. 2016;233:11-19. https://doi.org/10.1016/j.ijfoodmicro.2016.06.007
  90. 90. Xia X, Zhang Y, Li M, Garba B, Zhang Q, Wang Y, et al. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability. Food Control. 2017;75:92-98. https://doi.org/10.1016/j.foodcont.2016.12.036
  91. 91. Trinh LL, Le KN, Le Lam HA, Nguyen HH. Cell-free supernatants from plant growth-promoting rhizobacteria Bacillus albus strains control Aspergillus flavus disease in peanut and maize seedlings. Beni-Suef Univ J Basic Appl Sci. 2025;14(1):4. https://doi.org/10.1186/s43088-025-00594-1
  92. 92. Pukkasorn P, Ratphitagsanti W, Haruthaitanasan V. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties. J Sci Food Agric. 2018;98(8):2935-41. https://doi.org/10.1002/jsfa.8788
  93. 93. Emadi A, Jayedi A, Mirmohammadkhani M, Abdolshahi A. Aflatoxin reduction in nuts by roasting, irradiation and fumigation: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(18):5056-66. https://doi.org/10.1080/10408398.2021.1881436
  94. 94. Peng Z, Zhang Y, Ai Z, Pandiselvam R, Guo J, Kothakota A, et al. Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Compr Rev Food Sci Food Saf. 2023;22(5):4030-52. https://doi.org/10.1111/1541-4337.13197
  95. 95. Madbouly AK, Rashad YM, Ibrahim MI, Elazab NT. Biodegradation of aflatoxin B1 in maize grains and suppression of its biosynthesis-related genes using endophytic Trichoderma harzianum AYM3. J Fungi. 2023;9(2):209. https://doi.org/10.3390/jof9020209
  96. 96. Halasz A, Lasztity R, Abonyi T, Bata A. Decontamination of mycotoxin-containing food and feed by biodegradation. Food Rev Int. 2009;25(4):284-98. https://doi.org/10.1080/87559120903155750
  97. 97. Suresh G, Cabezudo I, Pulicharla R, Cuprys A, Rouissi T, Brar SK. Biodegradation of aflatoxin B1 with cell-free extracts of Trametes versicolor and Bacillus subtilis. Res Vet Sci. 2020;133:85-91. https://doi.org/10.1016/j.rvsc.2020.09.009
  98. 98. Yang P, Wu W, Zhang D, Cao L, Cheng J. AFB1 microbial degradation by Bacillus subtilis WJ6 and its degradation mechanism exploration based on the comparative transcriptomics approach. Metabolites. 2023;13(7):785. https://doi.org/10.3390/metabo13070785
  99. 99. Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin detoxification using microorganisms and enzymes. Toxins. 2021;13(1):46. https://doi.org/10.3390/toxins13010046
  100. 100. Topcu A, Bulat T, Wishah R, Boyacı IH. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol. 2010;139(3):202-5. https://doi.org/10.1016/j.ijfoodmicro.2010.03.006
  101. 101. Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, et al. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front Microbiol. 2022;13:1003039. https://doi.org/10.3389/fmicb.2022.1003039

Downloads

Download data is not yet available.