Review Articles
Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III
A review on aflatoxins in oilseeds: Sustainable strategies for detoxification through physical and microbial approaches
Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Office of Controllerate of Examinations, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Agricultural Engineering College and Research Institute, Kumulur, Trichy 621 712, Tamil Nadu, India
Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Aflatoxins (AFs) are highly toxic and carcinogenic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus, posing significant risks to food safety and public health. These mycotoxins commonly contaminate oilseeds such as peanuts, sunflower, cotton and maize seeds, particularly under warm and humid conditions. Controlling and reducing aflatoxin levels in these products is critical to ensuring food safety and complying with international regulatory standards. This review provides a comprehensive overview of current strategies for aflatoxin degradation in oilseeds, with a particular emphasis on physical and microbial approaches. Physical methods including thermal treatment, ammoniation, irradiation and advanced radiation techniques have been explored for their effectiveness in reducing aflatoxin levels. Microbial strategies involving specific bacteria, fungi and their enzymatic systems offer environmentally friendly and biologically based solutions for detoxification. The review critically examines the efficacy, mechanisms of action and limitations of each approach, highlighting the key factors that influence their success in practical applications. Moreover, it discusses the advantages and challenges associated with integrating these methods into existing food processing systems, considering factors such as cost-effectiveness, preservation of nutritional quality, regulatory acceptance and scalability. Finally, the review identifies key areas for future research, emphasizing the need to develop more efficient, sustainable and industrially viable technologies for large-scale aflatoxin decontamination in oilseeds. These advancements are essential for enhancing global food safety, protecting public health and supporting international trade.
References
- 1. Mekouar MA. Food and Agriculture Organization of the United Nations (FAO). Yearb Int Environ Law. 2023;34(1):yvae031. https://doi.org/10.1093/yiel/yvae031
- 2. Estimates TA. Directorate of Economics and Statistics (DES). Ministry of Agriculture and Farmers Welfare (MoA & FW), India. 2020.
- 3. Chauhan JS, Choudhury PR, Pal S, Singh KH. An overview of oilseeds and oil scenario, seed chain and strategy to energize seed production. Indian J Agric Sci. 2021;91(2):183-92. https://doi.org/10.56093/ijas.v91i2.111573
- 4. Sharma KK, Singh US, Sharma P, Kumar A, Sharma L. Seed treatments for sustainable agriculture. J Appl Nat Sci. 2015;7(1):521. https://doi.org/10.31018/jans.v7i1.641
- 5. Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4):e01495. https://doi.org/10.1016/j.heliyon.2019.e01495
- 6. Garuba T, AbdulRahaman AA, Olahan GS, Abdulkareem KA, Amadi JE. Effects of fungal filtrates on seed germination and leaf anatomy of maize seedlings (Zea mays L., Poaceae). J Appl Sci Environ Manage. 2014;18(4):662-67. https://doi.org/10.4314/jasem.v18i4.15
- 7. Pedraza LA, Bautista J, Uribe-Vélez D. Seed-borne Burkholderia glumae infects rice seedlings and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathol J. 2018;34(5):393. https://doi.org/10.5423/PPJ.OA.02.2018.0030
- 8. Jalili M, Jinap S, Noranizan MA. Aflatoxins and ochratoxin A reduction in black and white pepper by gamma radiation. Radiat Phys Chem. 2012;81(11):1786-88. https://doi.org/10.1016/j.radphyschem.2012.06.001
- 9. Natarajan KR, Rhee KC, Cater CM, Mattil KF. Distribution of aflatoxins in various fractions separated from raw peanuts and defatted peanut meal. J Am Oil Chem Soc. 1975;52:44-47. https://doi.org/10.1007/BF02901821
- 10. Park DL, Lee LS, Price RL, Pohland AE. Review of the decontamination of aflatoxins by ammoniation: current status and regulation. J Assoc Off Anal Chem. 1988;71(4):685-703. https://doi.org/10.1093/jaoac/71.4.685
- 11. Allameh A, Safamehr A, Mirhadi SA, Shivazad M, Razzaghi-Abyaneh M, Afshar-Naderi A. Evaluation of biochemical and production parameters of broiler chicks fed ammonia-treated aflatoxin-contaminated maize grains. Anim Feed Sci Technol. 2005;122(3-4):289-301. https://doi.org/10.1016/j.anifeedsci.2005.03.005
- 12. Ding X, Li P, Bai Y, Zhou H. Aflatoxin B1 in post-harvest peanuts and dietary risk in China. Food Control. 2012;23(1):143-48. https://doi.org/10.1016/j.foodcont.2011.06.026
- 13. Shapira R, Paster N, Menasherov M, Eyal O, Mett A, Meiron T, et al. Development of polyclonal antibodies for detection of aflatoxigenic molds involving culture filtrate and chimeric proteins expressed in Escherichia coli. Appl Environ Microbiol. 1997;63(3):990-95. https://doi.org/10.1128/aem.63.3.990-995.1997
- 14. Guchi E. Aflatoxin contamination in groundnut (Arachis hypogaea L.) caused by Aspergillus species in Ethiopia. J Appl Environ Microbiol. 2015;3(1):11-9.
- 15. Waliyar F, Kumar KV, Diallo M, Traore A, Mangala UN, Upadhyaya HD, et al. Resistance to pre-harvest aflatoxin contamination in ICRISAT's groundnut mini core collection. Eur J Plant Pathol. 2016;145:901-13. https://doi.org/10.1007/s10658-016-0879-9
- 16. Kasun BT, Vanniarachchy MP. Reduction of aflatoxin contamination in coconut oil using concentrated solar radiation. Food Chem Adv. 2023;3:100513. https://doi.org/10.1016/j.focha.2023.100513
- 17. Balsini MS, Dovom MR, Kadkhodaee R, Najafi MB, Yavarmanesh M. Effect of digestion and thermal processing on the stability of microbial cell-aflatoxin B1 complex. LWT. 2021;142:110994. https://doi.org/10.1016/j.lwt.2021.110994
- 18. Niu J, Li Y, Deng Y, Wei C, Jin J, Zhang H, et al. Degradation of aflatoxin B1 by X-ray irradiation. LWT. 2025;117384. https://doi.org/10.1016/j.lwt.2025.117384
- 19. Baoua IB, Amadou L, Ousmane B, Baributsa D, Murdock LL. PICS bags for post-harvest storage of maize grain in West Africa. J Stored Prod Res. 2014;58:20-8. https://doi.org/10.1016/j.jspr.2014.03.001
- 20. Vujcic I, Masic S. Preservation of hemp flour using high-energy ionizing radiation: The effect of gamma radiation on aflatoxin inactivation, microbiological properties and nutritional values. J Food Process Preserv. 2021;45(4):e15314. https://doi.org/10.1111/jfpp.15314
- 21. Zhang M, Jiao P, Wang X, Sun Y, Liang G, Xie X, et al. Evaluation of growth performance, nitrogen balance and blood metabolites of mutton sheep fed an ammonia-treated aflatoxin B1-contaminated diet. Toxins. 2022;14(5):361. https://doi.org/10.3390/toxins14050361
- 22. Mikityuk O, Nazarova T, Sinelnikov I, Shcherbakova L. Post-harvest biodegradation of aflatoxin B1 in rice grain and peanut seeds infected with Aspergillus flavus using a recombinant oxidase from Armillaria tabescens. In: International Conference on Agriculture Digitalization and Organic Production. Singapore: Springer Nature Singapore; 2024. p. 265-75. https://doi.org/10.1007/978-981-97-4410-7_22
- 23. Guan S, Zhou T, Yin Y, Xie M, Ruan Z, Young J. Microbial strategies to control aflatoxins in food and feed. World Mycotoxin J. 2011;4(4):413. https://doi.org/10.3920/WMJ2011.1290
- 24. Alberts JF, Gelderblom WC, Botha A, Van Zyl WH. Degradation of aflatoxin B1 by fungal laccase enzymes. Int J Food Microbiol. 2009;135(1):47-52. https://doi.org/10.1016/j.ijfoodmicro.2009.07.022
- 25. Wang J, Ogata M, Hirai H, Kawagishi H. Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624. FEMS Microbiol Lett. 2011;314(2):164-49. https://doi.org/10.1111/j.1574-6968.2010.02158.x
- 26. Dini I, Alborino V, Lanzuise S, Lombardi N, Marra R, Balestrieri A, et al. Trichoderma enzymes for degradation of aflatoxin B1 and ochratoxin A. Molecules. 2022;27(12):3959. https://doi.org/10.3390/molecules27123959
- 27. Saeed MK, Anjum S, Zahra N, Shahzadi I, Huma Z, Khan A, et al. Determination of aflatoxin in various spice samples and its detoxification using black seed oil: A biological approach. Diet Factor J Nutr Food Sci. 2024;24-9. https://doi.org/10.54393/df.v5i2.134
- 28. Sipos P, Peles F, Brassó DL, Béri B, Pusztahelyi T, Pócsi I, et al. Physical and chemical methods for reduction in aflatoxin content of feed and food. Toxins. 2021;13(3):204. https://doi.org/10.3390/toxins13030204
- 29. Jaiswar R, Sarathchandra G, Shanmugam SA, Felix N, Narayanan AL. Assessment of total aflatoxin (AFB1, AFB2, AFG1 and AFG2) in fish feed and feedstuffs by using high-performance thin-layer chromatography. Compr Rev Food Sci Food Saf. 2022;20(3):2332-38. https://doi.org/10.22271/tpi.2022.v11.i9Sq.15535
- 30. Wang HB, Mo ZM, Yuan GW, Dai XD, Zhou SY, Khoo HE, et al. Degradation of aflatoxin B1 in peanut oil by ultraviolet-LED cold-light irradiation and structure elucidation of the degradation products. J Oleo Sci. 2023;72(4):473-80. https://doi.org/10.5650/jos.ess22354
- 31. Ramezani M, Varidi M, Hashemi M, Rezaie M. Evaluation of the physicochemical properties and aflatoxin levels of industrial and non-industrial sesame oil. Iran J Chem Chem Eng. 2022;41(10).
- 32. Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, et al. Mycotoxins affecting animals, foods, humans and plants: Types, occurrence, toxicities, action mechanisms, prevention and detoxification strategies - A revisit. Foods. 2021;10(6):1279. https://doi.org/10.3390/foods10061279
- 33. Jallow A, Xie H, Tang X, Qi Z, Li P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr Rev Food Sci Food Saf. 2021;20(3):2332-81. https://doi.org/10.1111/1541-4337.12734
- 34. Alameri MM, Kong ASY, Aljaafari MN, Ali HA, Eid K, Sallagi MA, et al. Aflatoxin contamination: An overview on health issues, detection and management strategies. Toxins. 2023;15(4):246. https://doi.org/10.3390/toxins15040246
- 35. Farahmandfar R, Tirgarian B. Degradation of aflatoxins and tocopherols in peanut (Arachis hypogaea): Effect of aflatoxin type, time and temperature of roasting. Dry Technol. 2020;38(16):2182-89. https://doi.org/10.1080/07373937.2019.1687513
- 36. Martins LM, Sant'Ana AS, Iamanaka BT, Berto MI, Pitt JI, Taniwaki MH. Kinetics of aflatoxin degradation during peanut roasting. Food Res Int. 2017;97:178-83. https://doi.org/10.1016/j.foodres.2017.03.052
- 37. Proctor AD, Ahmedna M, Kumar JV, Goktepe I. Degradation of aflatoxins in peanut kernels/flour by gaseous ozonation and mild heat treatment. Food Addit Contam. 2004;21(8):786-93. https://doi.org/10.1080/02652030410001713898
- 38. Patil H, Shah NG, Hajare SN, Gautam S, Kumar G. Combination of microwave and gamma irradiation for reduction of aflatoxin B1 and microbiological contamination in peanuts (Arachis hypogaea L.). World Mycotoxin J. 2019;12(3):269-80. https://doi.org/10.3920/WMJ2018.2384
- 39. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, et al. Risk assessment of aflatoxins in food. EFSA J. 2020;18(3):e06040. https://doi.org/10.2903/j.efsa.2020.6040
- 40. FAO, WHO. Codex Alimentarius: General standard for contaminants and toxins in food and feed. CXS 193-1995. 1995.
- 41. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, et al. Guidance for the assessment of detoxification processes in feed. EFSA J. 2024;22(1):e8528. https://doi.org/10.2903/j.efsa.2024.8528
- 42. Park DL, Troxell TC. US perspective on mycotoxin regulatory issues. Mycotoxins Food Saf. 2002:277-85. https://doi.org/10.1007/978-1-4615-0629-4_29
- 43. Mutiga SK, Were V, Hoffmann V, Harvey JW, Milgroom MG, Nelson RJ. Extent and drivers of mycotoxin contamination: Inferences from a survey of Kenyan maize mills. Phytopathology. 2014;104(11):1221-31. https://doi.org/10.1094/PHYTO-01-14-0006-R
- 44. Mahmoud BS, Nannapaneni R, Chang S, Coker R. Effect of X-ray treatments on Escherichia coli O157:H7, Listeria monocytogenes, Shigella flexneri, Salmonella enterica and inherent microbiota on whole mangoes. Lett Appl Microbiol. 2016;62(2):138-44. https://doi.org/10.1111/lam.12518
- 45. Bozinou E, Athanasiadis V, Samanidis I, Govari M, Govaris A, Sflomos K, et al. Aflatoxin inactivation in gamma-ray-irradiated almonds. Appl Sci. 2024;14(24):11985. https://doi.org/10.3390/app142411985
- 46. Sebaei AS, Sobhy HM, Fouzy AS, Hussain OA. Occurrence of zearalenone in grains and its reduction by gamma radiation. Int J Environ Anal Chem. 2022;102(11):2503-11. https://doi.org/10.1080/03067319.2020.1756282
- 47. Jubeen F, Bhatti IA, Khan MZ, Zahoor-ul H, Shahid M. Effect of UVC irradiation on aflatoxins in groundnut (Arachis hypogaea) and tree nuts (Juglans regia, Prunus dulcis and Pistacia vera). J Chem Soc Pak. 2012;34(6):1366-74.
- 48. Wang B, Mahoney NE, Khir R, Wu B, Zhou C, Pan Z, et al. Degradation kinetics of aflatoxin B1 and B2 in solid medium by using pulsed light irradiation. J Sci Food Agric. 2018;98(14):5220-4. https://doi.org/10.1002/jsfa.9058
- 49. Abuagela MO, Iqdiam BM, Mostafa H, Gu L, Smith ME, Sarnoski PJ. Assessing pulsed light treatment on the reduction of aflatoxins in peanuts with and without skin. Int J Food Sci Technol. 2018;53(11):2567-75. https://doi.org/10.1111/ijfs.13851
- 50. Wang C, Li Z, Wang H, Qiu H, Zhang M, Li S, et al. Rapid biodegradation of aflatoxin B1 by metabolites of Fusarium sp. WCQ3361 with broad working temperature range and excellent thermostability. J Sci Food Agric. 2017;97(4):1342-48. https://doi.org/10.1002/jsfa.7872
- 51. Fernandez Juri MG, Dalcero AM, Magnoli CE. In vitro aflatoxin B1 binding capacity by two Enterococcus faecium strains isolated from healthy dog faeces. J Appl Microbiol. 2015;118(3):574-82. https://doi.org/10.1111/jam.12726
- 52. Verheecke C, Liboz T, Darriet M, Sabaou N, Mathieu F. In vitro interaction of actinomycetes isolates with Aspergillus flavus: Impact on aflatoxins B1 and B2 production. Lett Appl Microbiol. 2014;58(6):597-603. https://doi.org/10.1111/lam.12233
- 53. Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol. 2001;67(7):3086-93. https://doi.org/10.1128/AEM.67.7.3086-3091.2001
- 54. Akbar A, Khan MI, Khan GI. Probiotics in biodegradation of microbial toxins: Principles and mechanisms. In: Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications. 2022. p.161-71. https://doi.org/10.1002/9781119702160.ch7
- 55. Eslahi N, Kowsari M, Zamani MR, Motallebi M. The profile change of defense pathways in Phaseolus vulgaris L. by biochemical and molecular interactions of Trichoderma harzianum transformants overexpressing a chimeric chitinase. Biol Control. 2021;152:104304. https://doi.org/10.1016/j.biocontrol.2020.104304
- 56. Madbouly AK, Rashad YM, Ibrahim MI, Elazab NT. Biodegradation of aflatoxin B1 in maize grains and suppression of its biosynthesis-related genes using endophytic Trichoderma harzianum AYM3. J Fungi. 2023;9(2):209. https://doi.org/10.3390/jof9020209
- 57. Söylemez T, Berger RG, Krings U, Yamaç M. Aflatoxin B1 (AFB1) biodegradation by a lignolytic phenoloxidase of Trametes hirsuta. Sci Rep. 2025;15(1):6330. https://doi.org/10.1038/s41598-025-90711-y
- 58. Xie Y, Wang W, Zhang S. Purification and identification of an aflatoxin B1 degradation enzyme from Pantoea sp. T6. Toxicon. 2019;157:35-42. https://doi.org/10.1016/j.toxicon.2018.11.290
- 59. Wang L, Huang W, Shen Y, Zhao Y, Wu D, Yin H, et al. Enhancing the degradation of aflatoxin B1 by co-cultivation of two fungi strains with the improved production of detoxifying enzymes. Food Chem. 2022;371:131092. https://doi.org/10.1016/j.foodchem.2021.131092
- 60. Suo J, Liang T, Zhang H, Liu K, Li X, Xu K, et al. Characteristics of aflatoxin B1 degradation by Stenotrophomonas acidaminiphila and its combination with black soldier fly larvae. Life. 2023;13(1):234. https://doi.org/10.3390/life13010234
- 61. Chen G, Fang QA, Liao Z, Xu C, Liang Z, Liu T, et al. Detoxification of aflatoxin B1 by a potential probiotic Bacillus amyloliquefaciens WF2020. Front Microbiol. 2022;13:891091. https://doi.org/10.3389/fmicb.2022.891091
- 62. Wang Y, Zhang H, Yan H, Yin C, Liu Y, Xu Q, et al. Effective biodegradation of aflatoxin B1 using the Bacillus licheniformis (BL010) strain. Toxins. 2018;10(12):497. https://doi.org/10.3390/toxins10120497
- 63. Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P. Investigation and characterization of Myroides odoratimimus strain 3J2MO aflatoxin B1 degradation. J Agric Food Chem. 2019;67(16):4595-602. https://doi.org/10.1021/acs.jafc.8b06810
- 64. Feng J, Cao L, Du X, Zhang Y, Cong Y, He J, et al. Biological detoxification of aflatoxin B1 by Enterococcus faecium HB2-2. Foods. 2024;13(12):1887. https://doi.org/10.3390/foods13121887
- 65. Sangare L, Zhao Y, Folly YM, Chang J, Li J, Selvaraj JN, et al. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins. 2014;6(10):3028-40. https://doi.org/10.3390/toxins6103028
- 66. Zhu Y, Xu Y, Yang Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J Hazard Mater. 2021;414:125569. https://doi.org/10.1016/j.jhazmat.2021.125569
- 67. Shu X, Wang Y, Zhou Q, Li M, Hu H, Ma Y, et al. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins. 2018;10(8):330. https://doi.org/10.3390/toxins10080330
- 68. Bhat ZR, Hakeem KR. Removal and detoxification of aflatoxins. In: Aflatoxins in Food: A Perspective. Cham: Springer Int Publ. 2022. p. 195-205. https://doi.org/10.1007/978-3-030-85762-2_9
- 69. Pandey V. Promising detoxification approaches to mitigate aflatoxins in foods and feeds. In: Aflatoxins - Occurrence, Detoxification, Determination and Health Risks. IntechOpen; 2021. https://doi.org/10.5772/intechopen.96813
- 70. Fang L, Zhao B, Zhang R, Wu P, Zhao D, Chen J, et al. Occurrence and exposure assessment of aflatoxins in Zhejiang province, China. Environ Toxicol Pharmacol. 2022;92:103847. https://doi.org/10.1016/j.etap.2022.103847
- 71. Finotti E, Parroni A, Zaccaria M, Domin M, Momeni B, Fanelli C, et al. Aflatoxins are natural scavengers of reactive oxygen species. Sci Rep. 2021;11(1):16024. https://doi.org/10.1038/s41598-021-95325-8
- 72. Ramezani M, Varidi M, Hashemi M, Rezaie M. Evaluation of the physicochemical properties and aflatoxin levels of industrial and non-industrial sesame oil. Iran J Chem Chem Eng. 2022;41(10).
- 73. Wang C, Li J, Wang Q, Wu Q, Shi X. Fluorine-functionalized covalent organic framework as efficient solid phase extraction sorbent for adsorption of aflatoxins in nuts. J Hazard Mater. 2024;464:133017. https://doi.org/10.1016/j.jhazmat.2023.133017
- 74. Álvarez-Días F, Torres-Parga B, Valdivia-Flores AG, Quezada-Tristán T, Alejos-De La Fuente JI, Sosa-Ramírez J, et al. Aspergillus flavus and total aflatoxins occurrence in dairy feed and aflatoxin M1 in bovine milk in Aguascalientes, México. Toxins. 2022;14(5):292. https://doi.org/10.3390/toxins14050292
- 75. Schamann A, Schmidt-Heydt M, Geisen R, Kulling SE, Soukup ST. Formation of B- and M-group aflatoxins and precursors by Aspergillus flavus on maize and its implication for food safety. Mycotoxin Res. 2022;38(2):79-92. https://doi.org/10.1007/s12550-022-00452-4
- 76. Kortei NK, Annan T, Akonor PT, Richard SA, Annan HA, Wiafe-Kwagyan M, et al. Aflatoxins in randomly selected groundnuts (Arachis hypogaea) and its products from some local markets across Ghana: Human risk assessment and monitoring. Toxicol Rep. 2021;8:186-95. https://doi.org/10.1016/j.toxrep.2021.01.002
- 77. Ismail AM, Raza MH, Zahra N, Ahmad R, Sajjad Y, Khan SA. Aflatoxins in wheat grains: Detection and detoxification through chemical, physical and biological means. Life. 2024;14(4):535. https://doi.org/10.3390/life14040535
- 78. Saka HK, Bala I, Ahmad FU, Adamu AA, Yerima AK, Ibrahim AT, et al. Aflatoxin total and microbial contamination of grains, oil seeds, yam chips and fish sold in Maiduguri Market. Equity J Sci Technol. 2021;8(1):65-69. https://doi.org/10.4314/equijost.v8i1.10
- 79. Branà MT, Sergio L, Haidukowski M, Logrieco AF, Altomare C. Degradation of aflatoxin B1 by a sustainable enzymatic extract from spent mushroom substrate of Pleurotus eryngii. Toxins. 2020;12(1):49. https://doi.org/10.3390/toxins12010049
- 80. Mohsen E, El-Metwally MA, Ibrahim AA, Soliman MI. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed (Arachis hypogaea L.) during storage. Sci Prog. 2023;106(2):00368504231176165. https://doi.org/10.1177/00368504231176165
- 81. Dong X, Zhang Q, Zhang Z, Yue X, Zhang L, Chen X, et al. Inhibitory effect of Enterobacter cloacae 3J1EC on Aspergillus flavus 3.4408 growth and aflatoxin production. World Mycotoxin J. 2020;13(2):259-66. https://doi.org/10.3920/WMJ2019.2480
- 82. Yousef H, Abd-Elsalam KA, Abdel-Momen SM. Endophytic fungi for reduction of mycotoxin contamination in crops. In: Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection. Singapore: Springer Nat Singapore; 2025. p.185-224. https://doi.org/10.1007/978-981-97-8804-0_7
- 83. Zhao LH, Guan S, Gao X, Ma QG, Lei YP, Bai XM, et al. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J Appl Microbiol. 2011;110(1):147-55. https://doi.org/10.1111/j.1365-2672.2010.04867.x
- 84. Peng Z, Liu Y, Zhang Y, Ai Z, Lei D, Xie Y, et al. Radio frequency roasting promotes the degradation of aflatoxin B1 and achieves better quality of peanuts (Arachis hypogaea L.). Food Control. 2024;158:110232. https://doi.org/10.1016/j.foodcont.2023.110232
- 85. Appugol KA, Mangang IB, Shanmugasundaram S, Manickam L. Radiofrequency heating: A novel thermal treatment on the quality of peanut during disinfestation of Caryedon serratus and its potential in reducing aflatoxin. J Food Process Preserv. 2022;46(11):e17029. https://doi.org/10.1111/jfpp.17029
- 86. Zhang ZS, Xie QF, Che LM. Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Appl Radiat Isot. 2018;139:224-30. https://doi.org/10.1016/j.apradiso.2018.05.003
- 87. Al-Bachir M. Evaluation of the effect of gamma irradiation on microbial, chemical and sensorial properties of peanut (Arachis hypogaea L.) seeds. Acta Sci Pol Technol Aliment. 2016;15(2):171-9. https://doi.org/10.17306/J.AFS.2016.2.17
- 88. Zhu Y, Xu Y, Yang Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J Hazard Mater. 2021;414:125569. https://doi.org/10.1016/j.jhazmat.2021.125569
- 89. Adebo OA, Njobeh PB, Sidu S, Tlou MG, Mavumengwana V. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains. Int J Food Microbiol. 2016;233:11-19. https://doi.org/10.1016/j.ijfoodmicro.2016.06.007
- 90. Xia X, Zhang Y, Li M, Garba B, Zhang Q, Wang Y, et al. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability. Food Control. 2017;75:92-98. https://doi.org/10.1016/j.foodcont.2016.12.036
- 91. Trinh LL, Le KN, Le Lam HA, Nguyen HH. Cell-free supernatants from plant growth-promoting rhizobacteria Bacillus albus strains control Aspergillus flavus disease in peanut and maize seedlings. Beni-Suef Univ J Basic Appl Sci. 2025;14(1):4. https://doi.org/10.1186/s43088-025-00594-1
- 92. Pukkasorn P, Ratphitagsanti W, Haruthaitanasan V. Effect of ultra-superheated steam on aflatoxin reduction and roasted peanut properties. J Sci Food Agric. 2018;98(8):2935-41. https://doi.org/10.1002/jsfa.8788
- 93. Emadi A, Jayedi A, Mirmohammadkhani M, Abdolshahi A. Aflatoxin reduction in nuts by roasting, irradiation and fumigation: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2022;62(18):5056-66. https://doi.org/10.1080/10408398.2021.1881436
- 94. Peng Z, Zhang Y, Ai Z, Pandiselvam R, Guo J, Kothakota A, et al. Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Compr Rev Food Sci Food Saf. 2023;22(5):4030-52. https://doi.org/10.1111/1541-4337.13197
- 95. Madbouly AK, Rashad YM, Ibrahim MI, Elazab NT. Biodegradation of aflatoxin B1 in maize grains and suppression of its biosynthesis-related genes using endophytic Trichoderma harzianum AYM3. J Fungi. 2023;9(2):209. https://doi.org/10.3390/jof9020209
- 96. Halasz A, Lasztity R, Abonyi T, Bata A. Decontamination of mycotoxin-containing food and feed by biodegradation. Food Rev Int. 2009;25(4):284-98. https://doi.org/10.1080/87559120903155750
- 97. Suresh G, Cabezudo I, Pulicharla R, Cuprys A, Rouissi T, Brar SK. Biodegradation of aflatoxin B1 with cell-free extracts of Trametes versicolor and Bacillus subtilis. Res Vet Sci. 2020;133:85-91. https://doi.org/10.1016/j.rvsc.2020.09.009
- 98. Yang P, Wu W, Zhang D, Cao L, Cheng J. AFB1 microbial degradation by Bacillus subtilis WJ6 and its degradation mechanism exploration based on the comparative transcriptomics approach. Metabolites. 2023;13(7):785. https://doi.org/10.3390/metabo13070785
- 99. Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin detoxification using microorganisms and enzymes. Toxins. 2021;13(1):46. https://doi.org/10.3390/toxins13010046
- 100. Topcu A, Bulat T, Wishah R, Boyacı IH. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol. 2010;139(3):202-5. https://doi.org/10.1016/j.ijfoodmicro.2010.03.006
- 101. Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, et al. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front Microbiol. 2022;13:1003039. https://doi.org/10.3389/fmicb.2022.1003039
Downloads
Download data is not yet available.