Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Mechanisms involved in the uptake of nanofertilizers in the soil-plant system: A review

DOI
https://doi.org/10.14719/pst.10404
Submitted
2 July 2025
Published
05-11-2025

Abstract

To meet the demands of a projected population of nine billion people by 2050, a minimum 50 % increase in food production requires advanced technological interventions, considering the increasing deterioration of water and land resources. Nanotechnology initiatives have been launched to improve the agricultural sector, taking into account the exceptional properties of nanoparticles. The increasing application of nanotechnology in agriculture relies on several factors, including established effects, potential toxicity, monitored environmental fate and overdose thresholds. Plants are integral to ecosystems and nanoparticles can interact with their environment, including plant systems. Nanoparticles can engage with plants, affecting their absorption and accumulation in plant biomass, hence modifying their environmental fate and movement. Nanoparticles can penetrate living plant tissues. This has significant implications for their aggregation behaviour in ecosystems and their potential role as intelligent delivery systems within plants. Determining the ability of plants to absorb and transport intact nanoparticles is essential for various plant tissues. Precise dosage and effectiveness of nanoparticles on plant target surfaces represent a significant challenge. Minimising the dispersion of chemical products from bulk materials, such as mineral fertilisers, has emerged as a beneficial characteristic that enhances the possible application. To govern the role of nanoparticles within and outside of plants and their environmental implications, rigorous research under controlled settings is essential. Formulating an application strategy requires a thorough evaluation of nanoparticle dosage, exposure duration, translocation and accumulation patterns and mechanisms of action within plants.

References

  1. 1. Ali S, Mehmood A, Khan N. Uptake, translocation and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater. 2021. https://doi.org/10.1155/2021/6677616
  2. 2. Tarafdar JC, Kumar D, Singh SK, Singh KP, editors. Nanobiotechnology for agricultural sciences: nano-agri-input products for crop production and environmental protection. 1st ed. New York: Apple Academic Press; 2025. https://doi.org/10.1201/9781003620273
  3. 3. Hashim AF, Ahmed FK, Abd-Elsalam KA, Thomas S. Biopolymeric nanoparticles for agricultural applications: Note from Editors. In: Biopolymeric Nanoparticles for Agricultural Applications. Cham: Springer Nature; 2024. p. 1–26. https://doi.org/10.1007/978-3-031-68834-8_1
  4. 4. Lahiani MH, Gokulan K, Williams K, Khodakovskaya MV, Khare S. Graphene and carbon nanotubes activate different cell surface receptors on macrophages before and after deactivation of endotoxins. J Appl Toxicol. 2017;37(11):1305–16. https://doi.org/10.1002/jat.3477
  5. 5. Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, et al. Nanoparticle–plant interactions: two-way traffic. Small. 2019;15(37):1901794. https://doi.org/10.1002/smll.201901794
  6. 6. Shirsat S, Suthindhiran K. Iron oxide nanoparticles as iron micronutrient fertilizer—Opportunities and limitations. J Plant Nutr Soil Sci. 2024;187(5):565–88. https://doi.org/10.1002/jpln.202300203
  7. 7. Pabbati R, Chepuri K, Reddy KV, Maddela NR, editors. Plant-Based Nanoparticle Synthesis for Sustainable Agriculture. Boca Raton: CRC Press; 2025. https://doi.org/10.1201/9781003477730
  8. 8. Brindhav AM, Sharma S, Azizi S, Rana VS. Unveiling the cutting-edge applications of nanotechnology in the food industry-from lab to table-a comprehensive review. J Agric Food Res. 2025;20:101831. https://doi.org/10.1016/j.jafr.2025.101831
  9. 9. Rajput VD, El-Ramady H, Upadhyay SK, Minkina T, Ahmed B, Mandzhieva S, editors. Nano-biofortification for human and environmental health. Springer; 2023. https://doi.org/10.1007/978-3-031-35147-1
  10. 10. Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, et al. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical and molecular levels. Plants. 2023;12(2):292. https://doi.org/10.3390/plants12020292
  11. 11. Fincheira P, Tortella G, Duran N, Seabra AB, Rubilar O. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit Rev Biotechnol. 2020;40(1):15–30. https://doi.org/10.1080/07388551.2019.1681931
  12. 12. Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol Environ Saf. 2021;225:112769. https://doi.org/10.1016/j.ecoenv.2021.112769
  13. 13. Agrawal S, Kumar V, Kumar S, Shahi SK. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. Chemosphere. 2022;299:134465. https://doi.org/10.1016/j.chemosphere.2022.134465
  14. 14. Kumar P, Singh A, Rajput VD, Minkina T, Singh AK, editors. Smart technologies in sustainable agriculture: current and future prospects. 1st ed. Apple Academic Press; 2025. https://doi.org/10.1201/9781003493402
  15. 15. Jaswal A, Mehta CM. Nanoparticle-induced stress in crops: impact on growth, yield and human nutrition. Biogenic Nanoparticles. 2025;133–63. https://doi.org/10.1016/B978-0-443-33819-9.00010-X
  16. 16. Azeem A, Abbas N, Azeem S, Iqbal Z, Ul-Allah S. Physiological and molecular mechanism of nanoparticles induced tolerance in plants. In: Tariq A, editor. Emerging contaminants and plants: interactions, adaptations and remediation technologies. Cham: Springer; 2023. p. 233–48. https://doi.org/10.1007/978-3-031-22269-6_9
  17. 17. Thakur V, Sharma S, Kumar A, Kumar R. Unraveling nanoparticles efficiency in solanaceae crops: Mechanistic understanding, action and stress mitigation approaches. Ecol Front. 2024;44(6):1097-108. https://doi.org/10.1016/j.ecofro.2024.05.004
  18. 18. Satya, Khan T, Hashmi K, Raza S, Gupta S, Joshi S. Plant response to gold nanoparticles in terms of growth, development, production and protection: An overview. In: Husen A, editor. Plant response to gold nanoparticles: smart nanomaterials technology. Singapore: Springer; 2024. p. 1–35. https://doi.org/10.1007/978-981-97-7174-5_1
  19. 19. Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, et al. The role of nanoparticles in plant biochemical, physiological and molecular responses under drought stress: A review. Front Plant Sci. 2022;13:976179. https://doi.org/10.3389/fpls.2022.976179
  20. 20. Qidwai YN, Vishvakarma R, Farooqui A, Sharma P, Sharma S, Vimal A. Aluminum Oxide nanoparticles: plant response, interaction, phytotoxicity and defense mechanism. In: Husen A, editor. Nanomaterials and nanocomposites exposures to plants: smart nanomaterials technology. Singapore: Springer; 2023. p. 285–300. https://doi.org/10.1007/978-981-99-2419-6_14
  21. 21. Cruz, Tatiana Nishida Máximo da. Root absorption and effects of ZnO nanoparticles on Phaseolus vulgaris plants [dissertation]. Piracicaba (SP), Brazil: University of São Paulo, Centro de Energia Nuclear na Agricultura; 2018. https://doi.org/10.11606/D.64.2018.tde-14072021-155229
  22. 22. Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere. 2022;292:133451. https://doi.org/10.1016/j.chemosphere.2021.133451
  23. 23. Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanoscience in Food and Agriculture 5. Springer; 2017. https://doi.org/10.1007/978-3-319-58496-6
  24. 24. Soni S, Jha AB, Dubey RS, Sharma P. Nanowonders in agriculture: unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Sci Total Environ. 2024;925:171433. https://doi.org/10.1016/j.scitotenv.2024.171433
  25. 25. Kumar A, Karabulut F, Chandrawanshi N. Genetic and physiological mechanism of nanoparticle-based salt stress tolerance in plants. In: Namdeo P, Ravi MT, Gill SS, editors Nanotechnology for abiotic stress tolerance and management in crop plants. Academic Press; 2024. p. 215–28. https://doi.org/10.1016/B978-0-443-18500-7.00014-4
  26. 26. Ballikaya P, Marshall J, Cherubini P. Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time? Atmos Environ. 2022;268:118781. https://doi.org/10.1016/j.atmosenv.2021.118781
  27. 27. Rawal S, Singh P, Ali SA. Decoding the Nano-bio effects on the cellular expressions in plants. In: Chauhan NS, Gill SS, editors. The impact of nanoparticles on agriculture and Soil. Academic Press; 2023. p. 57–93. https://doi.org/10.1016/B978-0-323-91703-2.00008-7
  28. 28. Faizan M, Hayat S, Yu F, editors. Sustainable agriculture reviews 53: Nanoparticles: A new tool to enhance stress tolerance. Vol. 53. Springer Nature; 2022. https://doi.org/10.1007/978-3-030-86876-5
  29. 29. Elhefnawy SM, Elsheery NI. Use of nanoparticles in improving photosynthesis in crop plants under stress. In: Harvey JH, Suleyman IA, editors. Photosynthesis. Academic Press; 2023. p. 105–35. https://doi.org/10.1016/B978-0-323-98391-4.15001-4
  30. 30. Khan M, Chen JT, editors. Nanoparticles in plant biotic stress management. Singapore: Springer Nature; 2024. https://doi.org/10.1007/978-981-97-0851-2
  31. 31. Ghorbanpour M, Manika K, Varma A, editors. Nanoscience and plant-soil systems. Vol. 37. Cham: Springer; 2017. p. 112–6. https://doi.org/10.1007/978-3-319-46835-8
  32. 32. Shahzad R, Fiaz S, Qayyum A, Islam MU, Lee IJ. Revolutionizing agriculture: A comprehensive exploration of agri-nanotechnology. Switzerland: Springer Nature; 2024. https://doi.org/10.1007/978-3-031-76000-6
  33. 33. Sanzari I, Leone A, Ambrosone A. Nanotechnology in plant science: To make a long story short. Front Bioeng Biotechnol. 2019;7:120. https://doi.org/10.3389/fbioe.2019.00120
  34. 34. Ghaffari H, Razmjoo J. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. 2013;4:2997-3003.
  35. 35. El-Naggar ME, Abdelsalam NR, Fouda MM, Mackled MI, Al-Jaddadi MA, Ali HM, et al. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials. 2020;10(4):739. https://doi.org/10.3390/nano10040739
  36. 36. Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem. 2021;160:257–68. https://doi.org/10.1016/j.plaphy.2021.01.028
  37. 37. Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, et al. Nanofertilizer possibilities for healthy soil, water and food in future: An overview. Front Plant Sci. 2022;13:865048. https://doi.org/10.3389/fpls.2022.865048
  38. 38. Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res. 2012;46(3):854–62. https://doi.org/10.1021/ar2003368
  39. 39. Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere. 2022;287:132107. https://doi.org/10.1016/j.chemosphere.2021.132107
  40. 40. Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, et al. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. Plant Physiol Biochem. 2024;206:10826. https://doi.org/10.1016/j.plaphy.2023.108261
  41. 41. Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V. Nanofertilizers for sustainable fruit production: a review. Environ Chem Lett. 2021;19(2):1693–714. https://doi.org/10.1007/s10311-020-01125-3
  42. 42. Hatami M, Ghorbanpour M, Salehi-Arjmand H. Nano-anatase TiO2 modulates the germination behavior and enhances antioxidant defense system of Brassica napus. J Agric Food Chem. 2016;64(36):6826–38. https://doi.org/10.1021/acs.jafc.6b02792
  43. 43. Oloumi H, Sayyari M, Babalar M, Ghasemnezhad M. The effect of ZnO and CuO nanoparticles on growth and biochemical parameters of Glycyrrhiza glabra L. seedlings. Iran J Plant Physiol. 2015;5(3):1309–16.
  44. 44. Zhou Q, Hu X. Alterations of phenylalanine metabolism in rice (Oryza sativa) exposed to graphene oxide. Environ Sci Nano. 2017;4(9):1866–73. https://doi.org/10.1039/C7EN00402H
  45. 45. Anjum S, Komal A, Abbasi BH, Hano C. Nanotechnology in plant growth promotion and protection: recent advances and impacts. In: Wiley Series in Nanotechnology. Hoboken: Wiley; 2021. p. 170–202. https://doi.org/10.1002/9781119745884.ch9
  46. 46. Husen A, Siddiqi KS. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett. 2014;9(1):1–24. https://doi.org/10.1186/1556-276X-9-229
  47. 47. Soran ML, Lung I, Opris O, Culocov O, Cirita A, Stegarescu A, et al. The effect of TiO2 nanoparticles on the composition and ultrastructure of wheat. Nanomaterials. 2021;11(12):3413. https://doi.org/10.3390/nano11123413

Downloads

Download data is not yet available.