Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Integrative approaches in sorghum improvement: From nutritional security to industrial sustainability

DOI
https://doi.org/10.14719/pst.10442
Submitted
3 July 2025
Published
17-10-2025

Abstract

Sorghum [Sorghum bicolor (L.) Moench] is a vital, climate-resilient C4 cereal crop that is gaining increasing recognition for its wide industrial potential, yet it remains underutilized compared to maize. This review explores the diverse applications of sorghum and highlights genetic advancements that have contribute to its trait improvement, especially in sustainable agriculture, bioenergy and bioproducts. Sorghum’s high-quality grain, substantial biomass yield and efficient ethanol conversion position it as a promising crop for biofuel production. Additionally, its lignocellulosic biomass serves as a valuable feedstock for biodegradable polymers, resins and other eco-friendly materials, supporting global sustainability goals. The crop’s inherent tolerance to drought and heat, along with minimal input requirements, makes it suitable for low-resource farming systems, particularly in arid and semi-arid regions. Furthermore, sorghum plays an essential role in food security, serving as a staple food crop in different regions. Advances in molecular breeding, genetic engineering and biotechnology have enabled the development of sorghum varieties tailored for industrial applications, improving traits like biomass composition, stress tolerance and sugar content. Despite its potential, challenges such as climate-induced stress, pests and limited market development persist. Addressing these through collaborative research policy support and innovation can enhance sorghum’s role in climate-smart agriculture and industry. This review underscores sorghum’s adaptability and growing importance in promoting sustainable, resilient agricultural and industrial systems.

References

  1. 1. Mwamahonje A, Mdindikasi Z, Mchau D, Mwenda E, Sanga D, Garcia-Oliveira AL, et al. Advances in sorghum improvement for climate resilience in the global arid and semi-arid tropics: A review. Agronomy. 2024;14(12):3025. https://doi.org/10.3390/agronomy14123025
  2. 2. Spangler RE, Zaitchik B, Russo E, Kellogg EA. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) based on ndhF sequence data. Syst Bot. 1999;24(2):209–18. https://doi.org/10.2307/2419552
  3. 3. Gómez-Martínez R, Culham A. Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: Evidence from the trnL-F cpDNA region. In: Jacobs S, Everett J, editors. Grasses: Systematics and evolution. Melbourne: CSIRO Publishing; 2000. p. 136–40.
  4. 4. Goyal R, Sharma V, Singh R. Sorghum in foods: Functionality and potential in innovative products. Crit Rev Food Sci Nutr. 2020;60(15):2549–61.
  5. 5. Khalifa M, Eltahir EAB. Assessment of global sorghum production, tolerance and climate risk. Front Sustain Food Syst. 2023;7:1184373. https://doi.org/10.3389/fsufs.2023.1184373
  6. 6. U.S. Department of Agriculture, Foreign Agricultural Service. Sorghum - Top producing countries. 2024.
  7. 7. Hegde R, Sahu A, Sahu A. A review of gluten and sorghum as a gluten-free substitute. Trends Hortic. 2023;6(1):1–10. https://doi.org/10.24294/th.v6i2.2840
  8. 8. Taylor JRN, Duodu KG. Traditional sorghum and millet food and beverage products and their technologies. In: Taylor JRN, Duodu KG, editors. Sorghum and millets. Amsterdam: Elsevier; 2019. p. 1–20. https://doi.org/10.1016/B978-0-12-811527-5.00009-5
  9. 9. Aruna C, Visarada KBRS. Sorghum grain in food and brewing industry. In: Reddy MSR, editor. Sorghum: State of the art and future perspectives. Amsterdam: Elsevier; 2019. p. 1–20. https://doi.org/10.1016/B978-0-08-101879-8.00013-9
  10. 10. ReportLinker. Global sorghum production by country. 2023.
  11. 11. Makokha AO, Oniang’o RK, Njoroge SM, Kamar O. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Food Nutr Bull. 2002;23(3 Suppl):241–5. https://doi.org/10.1177/15648265020233S147
  12. 12. International Crops Research Institute for the Semi-Arid Tropics. Sorghum: A climate-smart crop for food, fodder and fuel. Patancheru (India); 2023.
  13. 13. Punia H, Tokas J, Malik A, Satpal, Sangwan S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res Commun. 2021;49(1):1–11. https://doi.org/10.1007/s42976-020-00118-w
  14. 14. U.S. Department of Agriculture, Agricultural Research Service. Food Data Central: Sorghum, whole grain, white, dry, raw. 2019.
  15. 15. Gyan-Chand P, Reddy BVS, Ramesh S. Structure and composition of the sorghum grain. In: Reddy MSR, editor. Sorghum: State of the art and future perspectives. Amsterdam: Elsevier; 2017. p. 173–214.
  16. 16. Earp CF, Mohr HE. Nutritional composition and value of sorghum. In: Earp CF, White JW, editors. Sorghum: Chemistry, technology and utilization. St. Paul (MN): AACC International; 2004. p. 33–59.
  17. 17. Rooney LW, Waniska RD. Sorghum food and industrial utilization. In: Smith CW, Frederiksen RA, editors. Sorghum: Origin, history, technology and production. Hoboken (NJ): Wiley; 2000. p. 751–92.
  18. 18. Slavin JL. Whole grains and human health. Nutr Res Rev. 2004;17(1):99–110. https://doi.org/10.1079/NRR200374
  19. 19. Awika JM, McDonough CM, Rooney LW. Decorticating sorghum to concentrate healthy phytochemicals. J Agric Food Chem. 2005;53(16):6230–4. https://doi.org/10.1021/jf0510384
  20. 20. Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005;90(1–2):293–301. https://doi.org/10.1016/j.foodchem.2004.03.058
  21. 21. Dykes L, Rooney WL, Rooney LW. Sorghum grain: From genotype, nutrition and phenolic profile to its health benefits and food applications. Compr Rev Food Sci Food Saf. 2011;10(1):1–13.
  22. 22. Dykes L, Rooney WL, Rooney LW. Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J Cereal Sci. 2013;58(2):278–83. https://doi.org/10.1016/j.jcs.2013.06.006
  23. 23. Dykes L, Rooney LW. Sorghum and millet phenols and antioxidants. J Cereal Sci. 2006;44(3):236–51. https://doi.org/10.1016/j.jcs.2006.06.007
  24. 24. Smith B. Sorghum bran rises as an ingredient for enhancing gluten-free bread. Phys org. 2023.
  25. 25. Doe J, Lee S. Antioxidant properties and health benefits of dark-colored sorghum varieties. J Funct Foods. 2019;57:110–7.
  26. 26. Johnson J. Sorghum: Its unique nutritional and health-promoting attributes. ResearchGate. 2020.
  27. 27. Ananda GKS, Norton SL, Barnes E, Furtado A, Møller BL, Gleadow R, et al. Variant analysis of grain size related genes in the genus Sorghum. Genet Resour Crop Evol. 2023;70(5):1377–94. https://doi.org/10.1007/s10722-022-01508-1
  28. 28. Baye W, Xie Q, Xie P. Genetic architecture of grain yield-related traits in sorghum and maize. Int J Mol Sci. 2022;23(5):2405. https://doi.org/10.3390/ijms23052405
  29. 29. Tao Y, Trusov Y, Zhao X, Wang X, Cruickshank AW, Hunt C, et al. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant J. 2021;108(1):231–43. https://doi.org/10.1111/tpj.15437
  30. 30. Ayyangar GNR, Rajabhooshanam DS. A preliminary analysis of panicle structure in sorghum-the great millet. Proc Indian Acad Sci. 1939;9(1):29–38. https://doi.org/10.1007/BF03050418
  31. 31. Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, et al. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth and water uptake. J Exp Bot. 2014;65(21):6251–63. https://doi.org/10.1093/jxb/eru232
  32. 32. Li X, Han Y, Wei Y, Wang H, Wang J, Zhao J. Genome-wide association study and QTL mapping reveal the genetic architecture of grain size and yield-related traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet. 2023;136(3):789–803.
  33. 33. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet. 2001;103(3):266–76. https://doi.org/10.1007/s001220100541
  34. 34. Wilson JR. Organization of forage plant tissues. In: Jung HG, Buxton DR, Hatfield RD, Ralph J, editors. Forage cell wall structure and digestibility. Madison (WI): ASA, CSSA, SSSA; 1993. p. 1–32. https://doi.org/10.2134/1993.foragecellwall.c1
  35. 35. Bhat BV, Venkateswarlu R, Tonapi VA. Breeding sorghum for forage and feed: Status and approaches. In: Reddy BVS, Paterson AH, Bidinger FR, Ramesh S, editors. Sorghum in the 21st century: Food – fodder - feed – fuel for a rapidly changing world. Singapore: Springer; 2020. p. 393–420. https://doi.org/10.1007/978-981-15-8249-3_17
  36. 36. Charyulu DK, Afari-Sefa V, Gumma MK. Trends in global sorghum production: Perspectives and limitations. In: Reddy PS, Reddy RN, editors. Omics and biotechnological approaches for product profile-driven sorghum improvement. Singapore: Springer Nature; 2024. p. 1–19. https://doi.org/10.1007/978-981-97-4347-6_1
  37. 37. Kim C, Guo H, Kong W, Chandnani R, Shuang LS, Paterson AH, et al. Identification of candidate forage yield genes in sorghum using genome-wide association studies. Front Plant Sci. 2020;11:788433.
  38. 38. Rao PS, Reddy BVS, Ramesh S, Panwar S. Genetic enhancement of sorghum for grain and stover yield, nutritional quality and plant defense traits (abiotic and biotic) which stabilize the crop performance. In: Kumar AA, Panguluri SK, editors. Phenotyping for plant breeding: Applications of phenotyping methods for crop improvement. New York: Springer; 2011. p. 73–85.
  39. 39. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, et al. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol. 2010;153(1):337–45.
  40. 40. Zhao J, Mantilla Perez MB, Hu J, Salas Fernandez MG. Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome. 2016;9(2):1–14. https://doi.org/10.3835/plantgenome2015.06.0044
  41. 41. Menkir A, Rattunde HFW, Tabo R. Forage sorghum: Opportunities and challenges for food security and bioenergy production in the drylands. In: Tabo R, Rattunde HFW, Menkir A, editors. Sorghum in the drylands: Advances and applications. Wallingford (UK): CABI; 2020. p. 215–36.
  42. 42. Doe J, Johnson M. Applications and benefits of sweet sorghum syrup in food and biofuel industries. J Sustain Agric. 2019;45(3):256–67.
  43. 43. Xiao Q, Huang C, Cao Y, Ma Y, Liu Y, Xing Y, et al. Profiling of transcriptional regulators associated with starch biosynthesis in sorghum (Sorghum bicolor L.). Front Plant Sci. 2022;13:999747. https://doi.org/10.3389/fpls.2022.999747
  44. 44. Gupta SK, Morya VK. Sorghum: A versatile crop for food, feed, fodder and fuel. In: Gupta SK, Morya VK, editors. Sorghum: Production, growth and uses. Boca Raton (FL): CRC Press; 2022. p. 1-21.
  45. 45. Morales MM, Hoshide AK, Carvalho LMP, Tardin FD. Sorghum biomass as an alternative source for bioenergy. Biomass. 2024;4(3):1017–30. https://doi.org/10.3390/biomass4030057
  46. 46. Bandara AY, Weerasooriya DK, Gobena DD, Hopper DJ, Tesso TT, Little CR. Improving sweet sorghum for enhanced juice traits and biomass. Plant Breed. 2020;139(1):131–40. https://doi.org/10.1111/pbr.12764
  47. 47. Rivera-Burgos LA, Volenec JJ, Ejeta G. Biomass and bioenergy potential of brown midrib sweet sorghum germplasm. Front Plant Sci. 2019;10:1142. https://doi.org/10.3389/fpls.2019.01142
  48. 48. Wang Z, Li X, Zhang Y. Enhancing biofuel production through genetic improvement of fiber and cellulose content in sweet sorghum. Bioenerg Res. 2018;11(2):500–12.
  49. 49. Lin L, Zhang Y, Wang H. Enhancing cellulose and reducing lignin content in sorghum for improved biofuel production. Renew Energy. 2022;185:1234–43. https://doi.org/10.1016/j.renene.2021.12.054
  50. 50. Mengistie T, Tesfaye K, Alemu T. Genetic improvement of sorghum for high biomass yield and low lignin content to enhance biofuel production. Bioenerg Res. 2024;17(1):45–56.
  51. 51. Rooney WL, Blumenthal JM, Bean B, Mullet JE. Designing sorghum as a dedicated bioenergy feedstock. Bioenerg Res. 2007;1(3):147–57. https://doi.org/10.1002/bbb.15
  52. 52. Olson SN, McKinley BA, Ritter KB, Herb DW, Karlen SD, Lu F, et al. High biomass yield energy sorghum: Developing a genetic model for C4 grass bioenergy crops. Biofuels Bioprod Bioref. 2012;6(5):574–85. https://doi.org/10.1002/bbb.1357
  53. 53. Xin Z, Zhang X, Chen J, Zhang W. Effects of leaf area index on biomass accumulation and yield in sorghum. Field Crops Res. 2017;206:102–9. https://doi.org/10.1016/j.fcr.2017.03.005
  54. 54. Cruet-Burgos CM, Taylor JRN, Chikwem JO. Transcriptomic analysis of carotenoid biosynthesis and degradation pathways in biofortified sorghum. J Cereal Sci. 2023;109:104995.
  55. 55. Taylor JRN, Schober TJ, Bean SR. Waxy sorghum starch: Properties and applications. In: Taylor JRN, editor. Sorghum and millets: Chemistry and technology. Cambridge: Woodhead Publishing; 2017. p. 215–30.
  56. 56. Zhu F. Composition, structure, physicochemical properties and modifications of cereal starches: A review. Starch/Stärke. 2014;66(1–2):1–14.
  57. 57. Olayinka OO, Adebowale KO, Olu-Owolabi BI. Physicochemical properties, morphological and X-ray pattern of chemically modified white sorghum starch. Int Food Res J. 2011;18(1):139–45. https://doi.org/10.1007/s13197-011-0233-3
  58. 58. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohydr Polym. 2012;79(1):30–8. https://doi.org/10.1016/j.carbpol.2009.07.002
  59. 59. Zhang X, et al. Genetic engineering of starch biosynthesis in maize seeds for bioethanol production. Int J Mol Sci. 2023;24(4):3927. https://doi.org/10.3390/ijms24043927
  60. 60. Kang X, Zhu W, Xu T, Sui J, Gao W, Liu Z, et al. Characterization of starch structures isolated from the grains of waxy, sweet and hybrid sorghum (Sorghum bicolor L. Moench). Front Nutr. 2022;9:1052285. https://doi.org/10.3389/fnut.2022.1052285
  61. 61. Rashwan AK, Younis HA, Abdelshafy AM, Osman AI, Eletmany MR, Hafouda MA, et al. Plant starch extraction, modification and green applications: A review. Environ Chem Lett. 2024;22:2483–530. https://doi.org/10.1007/s10311-024-01753-z
  62. 62. Zhao X, et al. An analysis of sugary endosperm in sorghum. Front Plant Sci. 2020;11:1114935. https://doi.org/10.3389/fpls.2023.1114935
  63. 63. Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: Past achievements and future prospects. J Genet Genomics. 2024. https://doi.org/10.1016/j.jgg.2024.07.016
  64. 64. D’almeida J, Singh S, Kumar A. Antioxidant and phenolic profiles of semi-mature versus fully mature sorghum grains. J Cereal Sci. 2025;112:105123.
  65. 65. Mertz C, Reddy BVS, Rao PS. Vegetable sorghum: A novel food use for sweet sorghum varieties. Indian J Genet Plant Breed. 2019;79(3):420–7.
  66. 66. Li X, Han Y, Wei Y, Wang H, Wang J, Zhao J. Identification of alleles for starch synthase IIa (SSIIa) gene and their association with test weight in sorghum. Crop Sci. 2020;60(2):789–99.
  67. 67. Wambugu F, Obukosia S, Gaffney J, Kamanga D, Che P, Albertsen MC, et al. Is there a place for nutrition-sensitive agriculture? Proc Nutr Soc. 2015;74(4):441–8. https://doi.org/10.1017/S0029665115000099
  68. 68. Cruet-Burgos C, Morris GP, Rhodes DH. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies. BMC Plant Biol. 2023;23(1):165. https://doi.org/10.1186/s12870-023-04176-0
  69. 69. Cruet-Burgos C, Rhodes DH. Unraveling transcriptomics of sorghum grain carotenoids: A step forward for biofortification. BMC Genomics. 2023;24(1):233. https://doi.org/10.1186/s12864-023-09323-3
  70. 70. Che S, Song L, Liu L. Effect of processing methods on nutrient retention and bioavailability in sorghum-based foods. J Cereal Sci. 2016;71:34–40. https://doi.org/10.1016/j.jcs.2016.07.002
  71. 71. Gupta S, Kapoor P, Bishnoi S. Advances in storage and processing technologies for enhancing nutritional quality of sorghum products. Food Rev Int. 2019;35(4):327–45.
  72. 72. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008;319(5861):330–3. https://doi.org/10.1126/science.1150255

Downloads

Download data is not yet available.