Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp3 (2025): Advances in Plant Health Improvement for Sustainable Agriculture

Omics approaches - Comprehensive insights for abiotic stress tolerance in horticultural crops

DOI
https://doi.org/10.14719/pst.10450
Submitted
4 July 2025
Published
18-11-2025

Abstract

Abiotic stress tolerance in plants can be better understood and enhanced through the use of omics techniques, which entail the extensive study of biological molecules. Drought, salt, temperature fluctuations and heavy metal toxicity are examples of abiotic stresses that can drastically lower the output of agriculture. Researchers identified the molecular mechanisms behind plant responses to these stresses and created plans for enhancing agricultural stress tolerance by utilizing a variety of omics technologies, including phenomics, proteomics, metabolomics, transcriptomics and genomics. Researchers are now able to clarify the molecular expressions behind the difficult-to-understand plant stress responses because of the advancements in omics methods and technology. CRISPR-Cas9 genome editing has the ability to overexpress resilience factors or wipe out susceptibility genes. Regulatory networks governing stress-adaptive pathways were revealed by RNA-Seq. In order to lessen the consequences of stress, proteomics found proteins that had been activated by post-translational modifications. Osmoprotectants and signaling molecules produced during acclimation were discovered by metabolomics. Stress tolerance marker-trait connections have been found using "quantitative trait locus mapping." Climate resilience can be increased by introducing wild genes into crops. Crosstalks across stress tolerance pathways are being uncovered by combining these omics using systems biology modeling. In order to maintain food and nutritional security, the development of climate-resilient horticultural crops will be supported by ongoing omics developments.

References

  1. 1. Abobatta WF. The influence of climate change on interactions between environmental stresses and plants. In: Plant stress mitigators. Academic Press. 2023. p. 425-34. https://doi.org/10.1016/B978-0-323-89871-3.00021-5
  2. 2. Del Buono D, Regni L, Proietti P. Abiotic stresses, biostimulants and plant activity. Agriculture. 2023;13(1):191. https://doi.org/10.3390/agriculture13010191
  3. 3. Li Y, Roychowdhury R, Govta L, Jaiwar S, Wei ZZ, Shams I, et al. Intracellular reactive oxygen species-aided localized cell death contributing to immune responses against wheat powdery mildew pathogen. Phytopathology. 2023;113(5):884-92. https://doi.org/10.1094/phyto-07-22-0271-FI
  4. 4. Guiteras R. The impact of climate change on Indian agriculture. Manuscript, Department of Economics, University of Maryland, College Park. 2009:1-54.
  5. 5. Levy BS, Sidel VW, Patz JA. Climate change and collective violence. Annu Rev Public Health. 2017;38:241-57. https://doi.org/10.1146/annurev-publhealth-031816-044232
  6. 6. Sheikh N, Barman D, Bhattacharjee K. Abiotic and biotic stress research in plants: a gizmatic approach of modern omics technologies. In: Sustainable Agriculture in the Era of Climate Change. 2020:413-39. https://doi.org/10.1007/978-3-030-45669-6_19
  7. 7. Roorkiwal M, Pandey S, Thavarajah D, Hemalatha R, Varshney RK. Molecular mechanisms and biochemical pathways for micronutrient acquisition and storage in legumes to support biofortification for nutritional security. Front Plant Sci. 2021;12:682842. https://doi.org/10.3389/fpls.2021.682842
  8. 8. Krishnamoorthy N, Dey B, Unpaprom Y, Ramaraj R, Maniam GP, Govindan N, et al. Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review. J Environ Chem Eng. 2021;9(5):105579. https://doi.org/10.1016/j.jece.2021.105579
  9. 9. Taha RS, Seleiman MF, Alhammad BA, Alkahtani J, Alwahibi MS, Mahdi AH. Activated yeast extract enhances growth, anatomical structure and productivity of Lupinus termis L. plants under actual salinity conditions. Agronomy. 2021;11(1):74. https://doi.org/10.3390/agronomy11010074
  10. 10. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium and arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972
  11. 11. Akpınar BA, Lucas SJ, Budak H. Genomics approaches for crop improvement against abiotic stress. Sci World J. 2013;2013(1):361921. https://doi.org/10.1155/2013/361921
  12. 12. Joshi R, Gupta BK, Pareek A, Singh MB, Singla-Pareek SL. Functional genomics approach towards dissecting out abiotic stress tolerance trait in plants. Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. 2019:1-24. https://doi.org/10.1007/978-3-319-91956-0_1
  13. 13. Rashid B, Husnain T, Riazuddin S. Genomic approaches and abiotic stress tolerance in plants. In Emerging technologies and management of crop stress tolerance. Academic Press. 2014. p. 1-37. https://doi.org/10.1016/B978-0-12-800876-8.00001-1
  14. 14. Raffeiner M, Üstün S, Guerra T, Spinti D, Fitzner M, Sonnewald S, et al. The Xanthomonas type-III effector XopS stabilizes Ca WRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). Plant Cell. 2022;34(5):1684-708. https://doi.org/10.1105/tpc.21.00762
  15. 15. Gago C, Drosou V, Paschalidis K, Guerreiro A, Miguel G, Antunes D, et al. Targeted gene disruption coupled with metabolic screen approach to uncover the LEAFY COTYLEDON1-LIKE4 (L1L4) function in tomato fruit metabolism. Plant Cell Rep. 2017;36:1065-82. https://doi.org/10.1007/s00299-017-2127-4
  16. 16. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 2016;14(1):169-76. https://doi.org/10.1111/pbi.12370
  17. 17. Tran MT, Son GH, Song YJ, Nguyen NT, Park S, et al. CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato. Front Plant Sci. 2023;14:1186932. https://doi.org/10.3389/fpls.2023.1186932
  18. 18. Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, et al. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 2019;19:1-3. https://doi.org/10.1186/s12870-019-2123-9
  19. 19. Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, et al. Identification and characterization of a thermotolerant TILLING allele of heat shock binding protein 1 in tomato. Genes. 2019;10(7):516. https://doi.org/10.3390/genes10070516
  20. 20. Habib S, Lwin YY, Li N. Down-regulation of SlGRAS10 in tomato confers abiotic stress tolerance. Genes. 2021;12(5):623. https://doi.org/10.3390/genes12050623
  21. 21. Al-Deeb T, Abo Gamar M, El-Assi N, Al-Debei H, Al-Sayaydeh R, Al-Abdallat AM. Stress-inducible overexpression of SlDDF2 gene improves tolerance against multiple abiotic stresses in tomato plant. Horticulturae. 2022;8(3):230. https://doi.org/10.3390/horticulturae8030230
  22. 22. Patel P, Yadav K, Srivastava AK, Suprasanna P, Ganapathi TR. Overexpression of native Musa-miR397 enhances plant biomass without compromising abiotic stress tolerance in banana. Sci Rep. 2019;9(1):16434. https://doi.org/10.1038/s41598-019-52858-3
  23. 23. Lu TT, Fan ZY, He XH, Yu HX, Liang RZ, Huang X, et al. Overexpression of mango MiMFT inhibits seed germination and enhances abiotic stress tolerance in transgenic Arabidopsis. Sci Hortic (Amsterdam). 2023;307:111495. https://doi.org/10.1016/j.scienta.2022.111495
  24. 24. Chang Y, Song X, Li M, Zhang Q, Zhang P, Lei X, et al. Characterization of walnut JrWOX11 and its overexpression provide insights into adventitious root formation and development and abiotic stress tolerance. Front Plant Sci. 2022;13:951737. https://doi.org/10.3389/fpls.2022.951737
  25. 25. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, et al. Sol Genomics Network (SGN) —from genotype to phenotype to breeding. Nucleic Acid Res. 2015;43(D1):036-41. https://doi.org/10.1093/nar/gku1195
  26. 26. Zheng Y, Wu S, Bai Y, Sun H, Jiao C, Guo S, et al. Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acid Res. 2019;47(D1):D1128-36. https://doi.org/10.1093/nar/gky944
  27. 27. Wei L, Liu Y, Dubchak I, Shon J, Park J. Comparative genomics approaches to study organism similarities and differences. J Biomed Inform. 2002;35(2):142-50. https://doi.org/10.1016/S1532-0464(02)00506-5
  28. 28. Kamali S, Singh A. Genomic and transcriptomic approaches to developing abiotic stress-resilient crops. Agronomy. 2023;13(12):2903. https://doi.org/10.3390/agronomy13122903
  29. 29. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 2019;47(D1):D853-8. https://doi.org/10.1093/nar/gky1095
  30. 30. Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47(D1):D807-11. https://doi.org/10.1093/nar/gky1053
  31. 31. Wang X, Li N, Li W, Gao X, Cha M, Qin L, et al. Advances in transcriptomics in the response to stress in plants. Glob Med Genet. 2020;7(02):030-4. https://doi.org/10.1055/s-0040-1713100
  32. 32. Nejat N, Ramalingam A, Mantri N. Advances in transcriptomics of plants. Plant Genet Mol Biol. 2018:161-85. https://doi.org/10.1007/978-3-319-91956-0_6
  33. 33. Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdisciplinary Reviews: RNA. 2017;8(1):e1364. https://doi.org/10.1002/wrna.1364
  34. 34. Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC, Scorilas A. Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life. 2021;12(1):30. https://doi.org/10.3390/life12010030
  35. 35. Ma L, Dong C, Song C, Wang X, Zheng X, Niu Y, et al. De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology. Comput Struct Biotechnol J. 2021;19:3954-63. https://doi.org/10.1016/j.csbj.2021.07.015
  36. 36. Sa R, Liu D, Chen L, Liu L, Zhang Y, Zhang X, et al. Transcriptome analysis of mechanisms and candidate genes associated with cucumber response to Cucumber alternaria leaf spot infection. Physiol Mol Plant Pathol. 2020;111:101490. https://doi.org/10.1016/j.pmpp.2020.101490
  37. 37. Chaturvedi P, Ghatak A, Weckwerth W. Pollen proteomics: from stress physiology to developmental priming. Plant Reprod. 2016;29:119-32. https://doi.org/10.1007/s00497-016-0283-9
  38. 38. Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, Bhatti S, et al. Proteome modification in tomato plants upon long-term aluminum treatment. J Proteome Res. 2016;15(5):1670-84. https://doi.org/10.1021/acs.jproteome.6b00122
  39. 39. Ghatak A, Chaturvedi P, Weckwerth W. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 2017;8:757. https://doi.org/10.3389/fpls.2017.00757
  40. 40. de Mello CS, Van Dijk JP, Voorhuijzen M, Kok EJ, Arisi AC. Tuber proteome comparison of five potato varieties by principal component analysis. J Sci Food Agric. 2016;96(11):3928-36. https://doi.org/10.1002/jsfa.7599
  41. 41. Sheoran IS, Ross AR, Olson DJ, Sawhney VK. Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot. 2007;58(13):3525-35. https://doi.org/10.1093/jxb/erm207
  42. 42. Paul P, Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf KD, et al. The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteomics. 2016;131:48-60. https://doi.org/10.1016/j.jprot.2015.08.015
  43. 43. Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics. 2017;169:176-88. https://doi.org/10.1016/j.jprot.2017.08.025
  44. 44. Jorrin-Novo JV, Komatsu S, Sanchez-Lucas R, de Francisco LE. Gel electrophoresis-based plant proteomics: Past, present and future. J Proteomics. 2019;198:1-0. https://doi.org/10.1016/j.jprot.2019.01.010
  45. 45. Sghaier-Hammami B, Castillejo MÁ, Baazaoui N, Jorrín-Novo JV, Escandón M. GeLC-Orbitrap/MS and 2-DE-MALDI-TOF/TOF comparative proteomics analysis of seed cotyledons from the non-orthodox Quercus ilex tree species. J Proteomics. 2021;233:104087. https://doi.org/10.1016/j.jprot.2021.104087
  46. 46. López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Current trends in proteomic advances for food allergen analysis. Biology. 2020;9(9):247. https://doi.org/10.3390/biology9090247
  47. 47. Lyu S, Gao L, Zhang R, Zhang C, Hou X. Correlation analysis of expression profile and quantitative iTRAQ-LC-MS/MS proteomics reveals resistance mechanism against TuMV in Chinese cabbage (Brassica rapa ssp. pekinensis). Front Genet. 2020;11:963. https://doi.org/10.3389/fgene.2020.00963
  48. 48. Chen MX, Zhang Y, Fernie AR, Liu YG, Zhu FY. SWATH-MS-based proteomics: strategies and applications in plants. Trends Biotechnol. 2021;39(5):433-7. https://doi.org/10.1016/j.tibtech.2020.09.002
  49. 49. Komatsu S, Hashiguchi A. Subcellular proteomics: Application to elucidation of flooding-response mechanisms in soybean. Proteomes. 2018;6(1):13. https://doi.org/10.3390/proteomes6010013
  50. 50. Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular proteomics as a unified approach of experimental localizations and computed prediction data for Arabidopsis and crop plants. In Advances in Plant Omics and Systems Biology Approaches. Cham: Springer International Publishing. 2022. p. 67-89. https://doi.org/10.1007/978-3-030-74088-8_4
  51. 51. Cheng X, Xiao X, Chou KC. pLoc_bal-mPlant: predict subcellular localization of plant proteins by general PseAAC and balancing training dataset. Curr Pharm Des. 2018;24(34):4013-22. https://doi.org/10.2174/1381612824666180618124347
  52. 52. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-12. https://doi.org/10.1093/nar/gkaa1074
  53. 53. Schwacke R, Flügge UI. Identification and characterization of plant membrane proteins using ARAMEMNON. Plant Membrane Proteomics: Methods and Protocols. 2018:249-59. https://doi.org/10.1007/978-1-4939-7411-5_17
  54. 54. Sahu SS, Loaiza CD, Kaundal R. Plant-mSubP: a computational framework for the prediction of single-and multi-target protein subcellular localization using integrated machine-learning approaches. AoB Plants. 2020;12(3):plz068. https://doi.org/10.1093/aobpla/plz068
  55. 55. Zhang N, Rao RS, Salvato F, Havelund JF, Møller IM, Thelen JJ, et al. MU-LOC: a machine-learning method for predicting mitochondrially localized proteins in plants. Front Plant Sci. 2018;9:634. https://doi.org/10.3389/fpls.2018.00634
  56. 56. Yadav AK, Singla D. VacPred: Sequence-based prediction of plant vacuole proteins using machine-learning techniques. J Biosci. 2020;45:1-9. https://doi.org/10.1007/s12038-020-00098-y
  57. 57. Hsu CC, Zhu Y, Arrington JV, Paez JS, Wang P, Zhu P, et al. Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol Cell Proteomics. 2018;17(10):2068-80. https://doi.org/10.1074/mcp.TIR118.000702
  58. 58. Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, et al. Genomics, proteomics and metabolomics approaches to improve abiotic stress tolerance in tomato plant. Int J Mol Sci. 2023;24(3):3025. https://doi.org/10.3390/ijms24033025
  59. 59. Zheng F, Zhao X, Zeng Z, Wang L, Lv W, Wang Q, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography–mass spectrometry. Nat Protoc. 2020:1-9. https://doi.org/10.1038/s41596-020-0341-5
  60. 60. Feng Z, Ji S, Ping J, Cui D. Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends Anal Chem. 2021;143:116402. https://doi.org/10.1016/j.trac.2021.116402
  61. 61. Teklić T, Parađiković N, Špoljarević M, Zeljković S, Lončarić Z, Lisjak M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann Appl Biol 2021;178(2):169-91. https://doi.org/10.1111/aab.12665
  62. 62. Kebert M, Vuksanović V, Stefels J, Bojović M, Horák R, Kostić S, et al. Species-level differences in Osmoprotectants and Antioxidants Contribute to stress tolerance of Quercus robur L. and Q. Cerris L. Seedlings under Water Deficit and High temperatures. Plants. 2022;11(13):1744. https://doi.org/10.3390/plants11131744
  63. 63. Krauss M, Singer H, Hollender J. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 2010;397:943-51. https://doi.org/10.1007/s00216-010-3608-9
  64. 64. Flamini R, De Rosso M, De Marchi F, Dalla Vedova A, Panighel A, Gardiman M, et al. An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics. 2013;9(6):1243-53. https://doi.org/10.1007/s11306-013-0530-0
  65. 65. Singh D, Singh CK, Singh D, Sarkar SK, Prasad SK, Sharma NL, et al. Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars. Sci Rep. 2022;12(1):8005. https://doi.org/10.1038/s41598-022-11951-x
  66. 66. Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690. https://doi.org/10.3390/ijms23052690
  67. 67. Taha RS, Seleiman MF, Alhammad BA, Alkahtani J, Alwahibi MS, Mahdi AH. Activated yeast extract enhances growth, anatomical structure and productivity of Lupinus termis L. plants under actual salinity conditions. Agronomy. 2021;11(1):74. https://doi.org/10.3390/agronomy11010074
  68. 68. Irfan M, Kumar P, Ahmad I, Datta A. Unraveling the role of tomato Bcl-2-associated athanogene (BAG) proteins during abiotic stress response and fruit ripening. Sci Rep. 2021;11(1):21734. https://doi.org/10.1038/s41598-021-01348-x
  69. 69. Ming N, Ma N, Jiao B, Lv W, Meng Q. Genome wide identification of C2H2-type zinc finger proteins of tomato and expression analysis under different abiotic stresses. Plant Mol Biol Rep. 2020;38:75-94. https://doi.org/10.1007/s11105-019-01188-1
  70. 70. Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, et al. Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules. 2019;24(3):556. https://doi.org/10.3390/molecules24030556
  71. 71. Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, et al. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules. 2018;23(3):535. https://doi.org/10.3390/molecules2303053
  72. 72. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. Plos genetics. 2007;3(9):e162. https://doi.org/10.1371/journal.pgen.0030162
  73. 73. Trapero-Mozos A, Morris WL, Ducreux LJ, McLean K, Stephens J, Torrance L, et al. Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnol J. 2018;16(1):197-207. https://doi.org/10.1111/pbi.12775
  74. 74. Xu J, Wolters-Arts M, Mariani C, Huber H, Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica. 2017;213:1-2. https://doi.org/10.1007/s10681-017-1949-6
  75. 75. Xu Y, Guo SR, Shu S, Ren Y, Sun J. Construction of a genetic linkage map of rootstock-used pumpkin using SSR markers and QTL analysis for cold tolerance. Sci Hortic. 2017;220:107-13. https://doi.org/10.1016/j.scienta.2017.04.00
  76. 76. Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019;19:1-7. https://doi.org/10.1186/s12870-019-2131-9
  77. 77. Ayenan MA, Danquah A, Hanson P, Ampomah-Dwamena C, Sodedji FA, Asante IK, et al. Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): an integrated approach. Agronomy. 2019;9(11):720. https://doi.org/10.3390/agronomy9110720
  78. 78. Gonzalo MJ, Li YC, Chen KY, Gil D, Montoro T, Nájera I, et al. Genetic control of reproductive traits in tomatoes under high temperature. Front Plant Sci. 2020;11:326. https://doi.org/10.3389/fpls.2020.00326
  79. 79. Branham SE, Farnham MW. Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica. 2019;215:1-9. https://doi.org/10.1007/s10681-019-2365-7
  80. 80. Wang M, Liu W, Jiang B, Peng Q, He X, Liang Z, et al. Genetic analysis and related gene primary mapping of heat stress tolerance in cucumber using bulked segregant analysis. HortSci. 2019;54(3):423-28. https://doi.org/10.21273/HORTSCI13708-18
  81. 81. Yoong FY, O'Brien LK, Truco MJ, Huo H, Sideman R, Hayes R, et al. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ETHYLENE RESPONSE FACTOR1 (ERF1). Plant physiol. 2016;170(1):472-88. https://doi.org/10.1104/pp.15.01251
  82. 82. Tafesse EG, Gali KK, Lachagari VR, Bueckert R, Warkentin TD. Genome-wide association mapping for heat stress responsive traits in field pea. Int J Mol Sci. 2020;21(6):2043. https://doi.org/10.3390/ijms21062043
  83. 83. Yagcioglu M, Jiang B, Wang P, Wang Y, Ellialtioglu SS, Weng Y. QTL mapping of low temperature germination ability in cucumber. Euphytica. 2019;215:1-1. https://doi.org/10.1007/s10681-019-2367
  84. 84. Dong S, Wang W, Bo K, Miao H, Song Z, Wei S, et al. Quantitative trait loci mapping and candidate gene analysis of low temperature tolerance in cucumber seedlings. Front Plant Sci. 2019;10:1620. https://doi.org/10.3389/fpls.2019.01620
  85. 85. Wang H, Zhao S, Mao K, Dong Q, Liang B, Li C, et al. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC Plant Biol. 2018;18:1-9. https://doi.org/10.1186/s12870-018-1580-7
  86. 86. Wang X, Bao K, Reddy UK, Bai Y, Hammar SA, Jiao C, et al. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies and core collection development. Hortic Res. 2018;5. https://doi.org/10.1038/s41438-018-0080-8
  87. 87. Bert PF, Bordenave L, Donnart M, Hévin C, Ollat N, Decroocq S. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet. 2013;126(2):451-73. https://doi.org/10.1007/s00122-012-1993-5
  88. 88. Kere GM, Chen C, Guo Q, Chen J. Genetics of salt tolerance in cucumber (Cucumis sativus L.) revealed by quantitative traits loci analysis. 2017.
  89. 89. Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica. 2017;213:1-9. https://doi.org/10.1007/s10681-017-1938-9
  90. 90. Bessho-Uehara K, Furuta T, Masuda K, Yamada S, Angeles-Shim RB, Ashikari M, et al. Construction of rice chromosome segment substitution lines harboring Oryza barthii genome and evaluation of yield-related traits. Breed Sci. 2017;67(4):408-15. https://doi.org/10.1270/jsbbs.17062
  91. 91. Flores-Saavedra M, Gramazio P, Vilanova S, Mircea DM, Ruiz-González MX, Vicente Ó, et al. Introgressed eggplant lines with the wild Solanum incanum evaluated under drought stress conditions. J Integr Agric. 2024. https://doi.org/10.1016/j.jia.2024.03.005

Downloads

Download data is not yet available.