Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Crop plants under siege: Molecular insights into plant-fall armyworm interactions and genetic tools for management

DOI
https://doi.org/10.14719/pst.10476
Submitted
5 July 2025
Published
14-10-2025

Abstract

Spodoptera frugiperda (fall armyworm), an alien and highly destructive lepidopteran pest, presents a critical concern to global agriculture, particularly to staple crops such as sorghum, rice and maize. Its broad spectrum of hosts, rapid adaptability and increasing resistance to conventional insecticides have intensified the need for sustainable, plant-based pest management strategies. This review highlights recent molecular and genetic advances in enhancing crop resistance to S. frugiperda, with an emphasis on their relevance to crop improvement programs. Bt (Bacillus thuringiensis) transgenic crops producing Cry and Vip proteins have successfully impaired larval midgut activity while limiting impacts on non-target organisms. RNA interference (RNAi), particularly Host-Induced Gene Silencing (HIGS), offers a promising plant-mediated approach for silencing key insect genes involved in metabolism and development. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR Associated Protein) genome editing also opens up new possibilities for developing pest-resistant crops and deepening our understanding of pest biology through functional research. Complementary approaches such as Sterile Insect Techniques (SIT) and gene drives show potential as part of integrated management strategies when combined with plant biotechnology. Despite these advances, challenges remain, including delivery efficiency, regulatory concerns, potential off-target effects and resistance evolution. The integration of genetic technologies with ecological pest management, biosafety frameworks and stakeholder engagement will be essential for achieving durable, sustainable fall armyworm control. Although genetic strategies like Bt, RNAi and CRISPR hold great promise for managing fall armyworm, each approach has specific limitations and varying levels of field applicability. This review critically examines these methods to provide a balanced and practical perspective for their use in crop improvement. This review underscores the central role of plant biotechnology in crop improvement to safeguard agricultural productivity against S. frugiperda.

References

  1. 1. Montezano DG, Sosa-Gómez DR, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SD, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 2018;26(2):286-300. https://hdl.handle.net/10520/EJC-112bc26060
  2. 2. Suby SB, Soujanya PL, Yadava P, Patil J, Subaharan K, Prasad GS, et al. Invasion of fall armyworm (Spodoptera frugiperda) in India. Curr Sci. 2020;119(1):44-51. https://doi.org/10.18520/cs/v119/i1/44-51
  3. 3. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS one. 2016;27;11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632
  4. 4. Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar AR, Chandrashekara KJ. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr Sci. 2018;25;115 (4):621-3. https://doi.org/10.18520/cs/v115/i4/621-623
  5. 5. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manage. 2017;28(5):196-201. https://doi.org/10.1564/v28_oct_02
  6. 6. Abraham P, Beale T, Cock M, Corniani N, Day R, Godwin J, et al. Fall armyworm status: impacts and control options in Africa. Preliminary Evidence Note. 2017.
  7. 7. Secretariat IP, Gullino ML, Albajes R, Al-Jboory I, Angelotti F, Chakraborty S, et al. Scientific review of the impact of climate change on plant pests. FAO on behalf of the IPPC Secretariat. 2021.
  8. 8. Erb M, Reymond P. Molecular interactions between plants and insect herbivores. Annu Rev Plant Biol. 2019;70(1):527-557. https://doi.org/10.1146/annurev-arplant-050718-095910
  9. 9. Early R, González-Moreno P, Murphy ST, Day R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. BioRxiv. 2018:391847. https://doi.org/10.1101/391847
  10. 10. Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. Cues from chewing insects-the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol. 2015;26:80-86. https://doi.org/10.1016/j.pbi.2015.05.029
  11. 11. Peiffer M, Felton GW. Do caterpillars secrete “oral secretions”?. J Chem Ecol. 2009;35:326-335. https://doi.org/10.1007/s10886-009-9604-x
  12. 12. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci. 2013;4:49. https://doi.org/10.3389/fpls.2013.00049
  13. 13. Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, et al. Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci USA. 2006;103(23):8894-8899. https://doi.org/10.1073/pnas.0602328103
  14. 14. Arimura GI, Matsui K, Takabayashi J. Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant Cell Physiol. 2009;50(5):911-23. https://doi.org/10.1093/pcp/pcp030
  15. 15. Alborn HT, Turlings TC, Jones T, Stenhagen G, Loughrin JH, Tumlinson JH. An elicitor of plant volatiles from beet armyworm oral secretion. Science. 1997;276(5314):945-949. https://doi.org/10.1126/science.276.5314.945
  16. 16. Gao B, Li B, Yuan J, Shi Z, Zheng X, Wang G. Spodoptera frugiperda salivary glucose oxidase reduces the release of green leaf volatiles and increases terpene emission from maize. Insects. 2024;15(7):511. https://doi.org/10.3390/insects15070511
  17. 17. Hruska AJ. Fall armyworm (Spodoptera frugiperda) management by smallholders. CABI Reviews. (2019):1-1. https://doi.org/10.1079/PAVSNNR201914043
  18. 18. Chikmagalur Nagaraja B, Karuppannasamy A, Ramasamy A, Cholenahalli Narayanappa A, Chalapathi P, Maligeppagol M. CRISPR/Cas9-mediated mutagenesis of sex lethal (Sxl) gene impacts fertility of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol. 2023;114(2):1-5. https://doi.org/10.1002/arch.22035
  19. 19. Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, Nauen R. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects. 2020;11(8):545. https://doi.org/10.3390/insects11080545
  20. 20. Gao W, Li D, You H. Functional characterization and genomic analysis of the chlorantraniliprole-degrading strain Pseudomonas sp. GW13. Bioeng. 2019;6(4):106. https://doi.org/10.3390/bioengineering6040106
  21. 21. Kulye M, Mehlhorn S, Boaventura D, Godley N, Venkatesh SK, Rudrappa T, et al. Baseline susceptibility of Spodoptera frugiperda populations collected in India towards different chemical classes of insecticides. Insects. 2021;12(8):758. https://doi.org/10.3390/insects12080758
  22. 22. Gutierrez-Moreno R, Mota-Sanchez D, Blanco CA, Chandrasena D, Difonzo C, Conner J, et al. Susceptibility of fall armyworms (Spodoptera frugiperda) from Mexico and Puerto Rico to Bt proteins. Insects. 2020;11(12):831. https://doi.org/10.3390/insects11120831
  23. 23. Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, et al. CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide (PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). 3 Biotech. 2023;13(11):370. https://doi.org/10.1007/s13205-023-03798-3
  24. 24. Toepfer S, Kuhlmann U, Kansiime M, Onyango DO, Davis T, Cameron K, et al. Communication, information sharing and advisory services to raise awareness for fall armyworm detection and area-wide management by farmers. J Plant Dis Prot. 2019;126(2):103-106. https://doi.org/10.1007/s41348-018-0202-4
  25. 25. Overton K, Maino JL, Day R, Umina PA, Bett B, Carnovale D, et al. Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Prot. 2021;145:105641. https://doi.org/10.1016/j.cropro.2021.105641
  26. 26. Gould F. Broadening the application of evolutionarily based genetic pest management. Evolution. 2008;62(2):500-10. https://doi.org/10.1111/j.1558-5646.2007.00298.x
  27. 27. Courtier-Orgogozo V, Morizot B, Boëte C. Agricultural pest control with CRISPR-based gene drive: Time for public debate. EMBO Rep. 2017;18(6):878-880. https://doi.org/10.15252/embr.201744205
  28. 28. Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL. Analysis of strain distribution, migratory potential andinvasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci Rep. 2018;8(1):3710. https://doi.org/10.1038/s41598-018-21954-1
  29. 29. Gouda MN, Deeksha MG. Genome editing in insects. In: Kumar G, editor. Current research in agricultural entomology. New Delhi: Bright Sky Publication; 2022.
  30. 30. Gouda MR, Jeevan H, Shashank HG. CRISPR/Cas9: A cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda. Mol Biol Rep. 2024;51(1):13. https://doi.org/10.1007/s11033-023-08986-1
  31. 31. Li AM, Wang M, Chen ZL, Qin CX, Liao F, Wu Z, et al. Transcriptome and metabolome analysis of sugarcane response to Spodoptera frugiperda. Int J Mol Sci. 2022;23(22):13712. https://doi.org/10.3390/ijms232213712
  32. 32. Scott MJ, Gould F, Lorenzen M, Grubbs N, Edwards O, O’Brochta D. Assessment of Cas9-mediated gene drive systems for agricultural pest control. J Responsible Innov. 2018;5(sup1):S98-S120. https://doi.org/10.1080/23299460.2017.1410343
  33. 33. Romeis J, Naranjo SE, Meissle M, Shelton AM. Genetically engineered crops help support conservation biological control. Biol Control. 2019;130:136-154. https://doi.org/10.1016/j.biocontrol.2018.10.001
  34. 34. Leclerc L, Nguyen TH, Duval P, Mariotti V, Petitot AS, Orjuela J, et al. Early transcriptomic responses of rice leaves to herbivory by Spodoptera frugiperda. Sci Rep. 2024;14(1):2836. https://doi.org/10.1038/s41598-024-53348-x
  35. 35. Arimura GI, Ozawa R, Maffei ME. Recent advances in plant early signaling in response to herbivory. Int J Mol Sci. 2011;12(6):3723-39. https://doi.org/10.3390/ijms12063723
  36. 36. Turlings TC, Erb M. Tritrophic interactions mediated by herbivore-induced volatiles: Mechanisms and application. Annu Rev Entomol. 2018;63(1):433-452. https://doi.org/10.1146/annurev-ento-020117-043507
  37. 37. Yang J, Ma C, Jia R, Zhang H, Zhao Y, Yue H, et al. Different responses of two maize cultivars to Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infestation provide insights into their differences in resistance. Front Plant Sci. 2023;14:1065891. https://doi.org/10.3389/fpls.2023.1065891
  38. 38. Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, et al. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus. Arthropod-Plant Interac. 2010;4:45-55. https://doi.org/10.1007/s11829-010-9086-3
  39. 39. Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012;17(5):250-259. https://doi.org/10.1016/j.tplants.2012.01.003
  40. 40. Fraenkel GS. The raison d'etre of secondary plant substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science. 1959;129(3361):1466-70. https://doi.org/10.1126/science.129.3361.1466
  41. 41. Hu L, Mateo P, Ye M, Zhang X, Berset JD, Handrick V, et al. Plant iron acquisition strategy exploited by an insect herbivore. Science. 2018;361(6403):694-697. https://doi.org/10.1126/science.aat4082
  42. 42. Felton GW, Tumlinson JH. Plant-insect dialogs: Complex interactions at the plant-insect interface. Curr Opin Plant Biol. 2008;11(4):457-463. https://doi.org/10.1016/j.pbi.2008.07.001
  43. 43. De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, et al. Spodoptera frugiperda caterpillars suppress herbivore-induced volatile emissions in maize. J Chem Ecol. 2020;46:344-360. https://doi.org/10.1007/s10886-020-01153-x
  44. 44. Ingber DA, Christensen SA, Alborn HT, Hiltpold I. Detecting the conspecific: Herbivory-induced olfactory cues in the fall armyworm (Lepidoptera: Noctuidae). Metabolites. 2021;11(9):583. https://doi.org/10.3390/metabo11090583
  45. 45. Heil M. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 2009;14(7):356-363. https://doi.org/10.1016/j.tplants.2009.04.002
  46. 46. Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. MPMI. 2014;27(5):461-470. https://doi.org/10.1094/MPMI-07-13-0193-R
  47. 47. Hogenhout, Saskia A, Renier AL, Van der Hoorn, Ryohei Terauchi, Sophien Kamoun. Emerging concepts in effector biology of plant-associated organisms. MPMI 2009;22(2):115-122. https://doi.org/10.1094/MPMI-22-2-0115
  48. 48. Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, et al. Caterpillar saliva beats plant defences: A new weapon in the evolutionary arms race. Nature. 2002;416:599-600. https://doi.org/10.1038/416599a
  49. 49. Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TC, et al. Induction and detoxification of maize benzoxazinones by insect herbivores. Plant J. 2011;68(5):901-911. https://doi.org/10.1111/j.1365-313X.2011.04740.x
  50. 50. Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, et al. The fall armyworm Spodoptera frugiperda utilizes specific UDP-glycosyltransferases to inactivate maize defensive benzoxazinoids. Front Physiol. 2020;11:604754. https://doi.org/10.3389/fphys.2020.604754
  51. 51. Acevedo FE, Smith P, Peiffer M, Helms A, Tooker J, Felton GW. Phytohormones in fall armyworm saliva modulate defense responses in plants. J Chem Ecol. 2019;45:598-609. https://doi.org/10.1007/s10886-019-01079-z
  52. 52. Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, et al. Exploring metabolomics to innovate management approaches for fall armyworm (Spodoptera frugiperda [JE Smith]) infestation in maize (Zea mays L.). Plants. 2024;13(17):2451. https://doi.org/10.3390/plants13172451
  53. 53. Sparks TC. Insecticide discovery: Evaluation and analysis. Pestic Biochem Physiol. 2013;107(1):8-17. https://doi.org/10.1016/j.pestbp.2013.05.012
  54. 54. Van Lenteren JC. Commercial augmentative biological control: Plenty of natural enemies, low uptake. BioControl. 2012;57(1):1-20. https://doi.org/10.1007/s10526-011-9395-1
  55. 55. Kumar RM, Gadratagi BG, Paramesh V, Kumar P, Madivalar Y, Narayanappa N, et al. Sustainable management of Spodoptera frugiperda. Agronomy. 2022;12(9):2150. https://doi.org/10.3390/agronomy12092150
  56. 56. Chen Y, Ni X, Buntin GD. Bases of corn resistance to fall armyworm: Physiological, nutritional, biochemical. J Chem Ecol. 2009;35(3):297-306. https://doi.org/10.1007/s10886-009-9600-1
  57. 57. Smith WE, Shivaji R, Williams WP, Luthe DS, Sandoya GV, Smith CL, et al. A resistant maize line constitutively releases (E)-β-caryophyllene. J Econ Entomol. 2012;105(1):120-128. https://doi.org/10.1603/EC11107
  58. 58. Ni X, Chen Y, Hibbard BE, Wilson JP, Williams WP, Buntin GD, et al. Corn germplasm lines with foliar resistance to fall armyworm. Fla Entomol. 2011;94(4):971-981. https://doi.org/10.1653/024.094.0434
  59. 59. Li Y, Wang Z, Romeis J. Managing the invasive fall armyworm through biotech crops: A Chinese perspective. Trends Biotechnol. 2021;39(2):105-7. https://doi.org/10.1016/j.tibtech.2020.07.001
  60. 60. He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, et al. Combined metabolome and transcriptome analyses of maize reveal global effect of biochar on anti-herbivory to Spodoptera frugiperda. Metabolites. 2024;14(9):498. https://doi.org/10.3390/metabo14090498
  61. 61. Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49(4):423-35. https://doi.org/10.1016/j.toxicon.2006.11.022
  62. 62. Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua feeding. J Exp Bot. 2017;68(16):4709-4723. https://doi.org/10.1093/jxb/erx274
  63. 63. Li Y, Hallerman EM, Wu K, Peng Y. Insect-resistant genetically engineered crops in China: Development, application andprospects for use. Annu Rev Entomol. 2020 65(1):273-292. https://doi.org/10.1146/annurev-ento-011019-025039
  64. 64. Bernardi O, Bernardi D, Horikoshi RJ, Okuma DM, Miraldo LL, Fatoretto J, et al. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Manag Sci. 2016;72(9):1794-802. https://doi.org/10.1002/ps.4223
  65. 65. Saleem F, Shakoori AR, Kongsuwan K, Gough J, Kemp D, McDevitt A. Bacterial vegetative insecticidal proteins (vip). Appl Environ Microbiol. 2010;55(1):00060-15.
  66. 66. Nellen W, Lichtenstein C. What makes an mRNA anti-sensi-itive?. Trends Biochem Sci. 1993;18(11):419-423. https://doi.org/10.1016/0968-0004(93)90137-C
  67. 67. Bera P, Suby SB, Dixit S, Vijayan V, Kumar N, Sekhar JC, et al. Identification of novel target genes for RNAi mediated management of the pest, Fall Armyworm (Spodoptera frugiperda, JE Smith). Crop Prot. 2025;187:106972. https://doi.org/10.1016/j.cropro.2024.106972
  68. 68. Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, et al. Down-regulation of P450 genes enhances susceptibility to indoxacarb and alters physiology and development of fall armyworm, Spodoptera frugipreda (Lepidoptera: Noctuidae). Front Physiol. 2022;13:884447. https://doi.org/10.3389/fphys.2022.884447
  69. 69. Griebler M, Westerlund SA, Hoffmann KH, Meyering-Vos M. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J Insect Physiol. 2008;54(6):997-1007. 10.1016/j.jinsphys.2008.04.019
  70. 70. Rodríguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol. 2010;12(11):2894-2903. https://doi.org/10.1111/j.1462-2920.2010.02259.x
  71. 71. Wan XS, Shi MR, Xu J, Liu JH, Ye H. Interference efficiency and effects of bacterium-mediated RNAi in the fall armyworm (Lepidoptera: Noctuidae). J Insect Sci. 2021;21(5):8. https://doi.org/10.1093/jisesa/ieab073
  72. 72. Tabashnik BE, Brévault T, Carrière Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31(6):510-521. https://doi.org/10.1038/nbt.2597
  73. 73. LaChance LE, Richard RD, Proshold FI. Radiation response in the pink bollworm: A comparative study of sperm bundle production, sperm transfer andoviposition response elicited by native and laboratory-reared males. Environ Entomol. 1975;4(2):321-324. https://doi.org/10.1093/ee/4.2.321
  74. 74. Cáceres C, McInnis D, Shelly T, Jang E, Robinson A, Hendrichs J. Quality management systems for fruit fly (Diptera: Tephritidae) sterile insect technique. Fla Entomol. 2007;90(1):1-9. https://doi.org/10.1653/0015-4040
  75. 75. Woods B, McInnis D, Steiner E, Soopaya A, Lindsey J, Lacey I, et al. Developing field cage tests to measure mating competitiveness of sterile light brown apple moths (Lepidoptera: Tortricidae) in Western Australia. Fla Entomol. 2016;99(sp1):138-145. https://doi.org/10.1653/024.099.sp117
  76. 76. Jiang S, Sun XT, Ge SS, Yang XM, Wu KM. Mating competitiveness of male Spodoptera frugiperda (Smith) irradiated by X-rays. Insects. 2023;14(2):137. https://doi.org/10.3390/insects14020137
  77. 77. Bourtzis K, Vreysen MJ. Sterile insect technique (SIT) and its applications. Insects. 2021;12(7):638. https://doi.org/10.3390/insects12070638
  78. 78. Judd GJ, Gardiner MG. Towards eradication of codling moth in British Columbia using mating disruption, tree banding and sterile insect technique: Five-year study in organic orchards. Crop Prot. 2005;24(8):718-733. https://doi.org/10.1016/j.cropro.2004.12.009
  79. 79. Alphey LS, Crisanti A, Randazzo F, Akbari OS. Standardizing the definition of gene drive. PNAAS. 2020;117(49):30864-7. https://doi.org/10.1073/pnas.2020417117
  80. 80. Price TA, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, et al. Resistance to natural and synthetic gene drive systems. J Evol Biol. 2020;33(10):1345-1360. https://doi.org/10.1111/jeb.13693
  81. 81. Raban RR, Marshall JM, Akbari OS. Progress towards engineering gene drives for population control. J Exp Biol. 2020;223(Suppl_1):jeb208181. https://doi.org/10.1242/jeb.208181
  82. 82. Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol Appl. 2021;14(9):2162-78. https://doi.org/10.1111/eva.13285
  83. 83. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR-Cas9 gene drive targeting doublesex causes population suppression in mosquitoes. Nat Biotechnol. 2018;36(11):1062-1066. https://doi.org/10.1038/nbt.4245
  84. 84. Chawanda G, Tembo YL, Donga TK, Kabambe VH, Stevenson PC, Belmain SR. Agroecological management of fall armyworm using soil and botanicals. Front Agron. 2023;5:1114496. https://doi.org/10.3389/fagro.2023.1114496
  85. 85. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manage. 2017;28(5):196-201. https://doi.org/10.1564/v28_oct_02
  86. 86. Hardke JT, Lorenz GM III, Leonard BR. Fall armyworm ecology in southeastern cotton. J Integr Pest Manag. 2015;6(1):10. https://doi.org/10.1093/jipm/pmv009
  87. 87. Abbas A, Ullah F, Hafeez M, Han X, Dara MZ, Gul H, et al. Biological control of fall armyworm. Agronomy. 2022;12(11):2704. https://doi.org/10.3390/agronomy12112704
  88. 88. Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CN, Smagghe G. RNAi technology for pest control. Pest Manag Sci. 2018;74(6):1239-1250. https://doi.org/10.1002/ps.4813
  89. 89. Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 2019;47(8):4169-4180. https://doi.org/10.1093/nar/gkz184
  90. 90. Anu CN, Ashok K, Bhargava CN, Dhawane Y, Manamohan M, Jha GK, et al. CRISPR/Cas9 mediated validation of spermatogenesis-related gene, tssk2 as a component of genetic pest management of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol. 2024;116(1):e22121. https://doi.org/10.1002/arch.22121
  91. 91. Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Manamohan M, et al. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Int J Biol Macromol. 2023;253:126557. https://doi.org/10.1016/j.ijbiomac.2023.126557
  92. 92. Wu K, Shirk PD, Taylor CE, Furlong RB, Shirk BD, Pinheiro DH, et al. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS One. 2018;13(12):e0208647. https://doi.org/10.1371/journal.pone.0208647
  93. 93. Wang C, Zhao T, Liu X, Li T, He L, Wang Q, et al. CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. Insects. 2023;15(1):16. https://doi.org/10.3390/insects15010016
  94. 94. Gu J, Wang J, Bi H, Li X, Merchant A, Zhang P, et al. CRISPR/Cas9-mediated mutagenesis of sex-specific doublesex splicing variants leads to sterility in Spodoptera frugiperda, a global invasive pest. Cells. 2022;11(22):3557. https://doi.org/10.3390/cells11223557
  95. 95. Song CA, Yang LI, Qing YA, Gui-rong WA. Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda. J Integr Agric. 2023;22(7):2162-72. https://doi.org/10.1016/j.jia.2022.11.004
  96. 96. Han W, Tang F, Zhong Y, Zhang J, Liu Z. Identification of yellow gene family and functional analysis of Spodoptera frugiperda yellow-y by CRISPR/Cas9. Pest Biochem Physiol. 2021;178:104937. https://doi.org/10.1016/j.pestbp.2021.104937
  97. 97. Xu HM, Li JJ, Zhao HZ, Pan MZ, Li ZY, Liu TX, et al. Regulating role of neuropeptide PTTH releaved in Spodoptera frugiperda using RNAi-and CRISPR/Cas9-based functional genomic tools. Entomol Gen. 2023; 43(2). https://doi.org/10.1127/entomologia/2023/1850
  98. 98. Dong Z, Qin Q, Hu Z, Zhang X, Miao J, Huang L, et al. CRISPR/Cas12a mediated genome editing enhances Bombyx mori resistance to BmNPV. Front Bioeng Biotechnol. 2020;8:841. https://doi.org/10.3389/fbioe.2020.00841
  99. 99. Yogi D, Ashok K, Anu CN, Shashikala T, Pradeep C, Bhargava CN, et al. CRISPR/Cas12a ribonucleoprotein mediated editing of tryptophan 2, 3-dioxygenase of Spodoptera frugiperda. Transgenic Res. 2024:1-3. https://doi.org/10.1007/s11248-024-00406-9
  100. 100. Secretariat of the Convention on Biological Diversity. Cartagena Protocol on Biosafety to the Convention on Biological Diversity: Text and annexes. Montreal. CBD Secretariat. 2000.
  101. 101. Zhang H, Li HC, Miao XX. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci. 2013; 20(1):15-30. https://doi.org/10.1111/j.1744-7917.2012.01513.x
  102. 102. Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-stranded RNA technology to control insect pests: current status and challenges. Front. Plant Sci. 2020;11:451. https://doi.org/10.3389/fpls.2020.00451
  103. 103. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from insect pest by expression of long dsRNAs in plastids. Science. 2015;347(6225):991-994. https://doi.org/10.1126/science.1261680
  104. 104. Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95-104. https://doi.org/10.1016/j.biotechadv.2016.12.003
  105. 105. Zhang Y, Massel K, Godwin ID, Gao C. Applications and potential of genome editing in crop improvement. Genome Biol. 2018;19(1):210. https://doi.org/10.1186/s13059-018-1586-y
  106. 106. Carrière Y, Brown ZS, Downes SJ, Gujar G, Epstein G, Omoto C, et al. Governing evolution: a socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio. 2020; 49:1-6. https://doi.org/10.1007/s13280-019-01167-0
  107. 107. Esvelt KM, Gemmell NJ. Conservation demands safe gene drive. PLoS biology. 2017;15(11):e2003850. https://doi.org/10.1371/journal.pbio.2003850
  108. 108. NASEM National Academies of Sciences, Medicine, Division on Earth, Life Studies, Board on Life Sciences, Committee on Gene Drive Research in Non-Human Organisms, Recommendations for Responsible Conduct. Gene drives on the horizon: Advancing science, navigating uncertainty andaligning research with public values, Washington, DC. The National Academies Press 2016.
  109. 109. Jones MS, Delborne JA, Elsensohn J, Mitchell PD, Brown ZS. Does the US public support using gene drives in agriculture? And what do they want to know? Sci Adv. 2019;5(9). https://doi.org/10.1126/sciadv.aau8462
  110. 110. Singh JA. Informed consent and community engagement in open field research: Lessons for gene drive science. BMC Med Ethics. 2019;20(1):54. https://doi.org/10.1186/s12910-019-0389-3
  111. 111. Sharanabasappa, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, et al. First report of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Hortic Ecosyst. 2018;24(1):23-29.
  112. 112. Prasanna BM, Huesing JE, Eddy R, Peschke VM, editors. Fall armyworm in Africa: A guide for integrated pest management. 1st ed. CIMMYT. 2018.
  113. 113. Xue R, Guo R, Li Q, Lin T, Wu Z, Gao N, et al. Rice responds to Spodoptera frugiperda infestation via epigenetic regulation of H3K9ac in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways. Plant Cell Rep. 2024;43(3):78. https://doi.org/10.1007/s00299-024-03160-8
  114. 114. Dongare PM, Madage VA, Deshpande NV, Joshi RS, Giri AP, Pawar PK. A novel bifunctional inhibitor of protease and α-amylase from Clitorea ternatea restricts the growth and development in Spodoptera frugiperda. Int J Biol Macromol. 2025;305:141180. https://doi.org/10.1016/j.ijbiomac.2025.141180
  115. 115. Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008;55(3):491-503. https://doi.org/10.1111/j.1365-313X.2008.03524.x
  116. 116. Yang J, Ma C, Jia R, Zhang H, Zhao Y, Yue H, et al. Different responses of two maize cultivars to Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infestation provide insights into their differences in resistance. Front Plant Sci. 2023;14:1065891. https://doi.org/10.3389/fpls.2023.1065891
  117. 117. Zhu GH, Chereddy SC, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochem Mol Biol. 2020;122:103373. https://doi.org/10.1016/j.ibmb.2020.103373

Downloads

Download data is not yet available.