Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Salicylic acid-mediated defence in tomato: A sustainable strategy against Helicoverpa armigera

DOI
https://doi.org/10.14719/pst.10480
Submitted
6 July 2025
Published
24-11-2025

Abstract

Salicylic acid (SA) is a key signalling molecule in plants, known to regulate defence responses against a wide range of biotic and abiotic stresses. The present study assessed the role of exogenous SA application in inducing resistance in tomato (Solanum lycopersicum) against the fruit borer, Helicoverpa armigera under two experimental setups (Set A: 40 days after transplanting (DAT) and Set B: 40 and 80 DAT) with five treatments (T1-T4: SA at 25, 50, 75 and 100 ppm and T5: control) and spray schedules were evaluated under controlled conditions to determine their influence on physiological traits, yield performance and pest infestation. The results demonstrated that SA application significantly enhanced chlorophyll content, relative leaf water status and fruit yield, while concurrently reducing the extent of fruit damage caused by H. armigera. Higher concentrations combined with double spray consistently produced superior outcomes compared to single sprays or untreated controls. Larval rearing studies further indicated that insects feeding on SA-treated plants exhibited reduced growth and survival, suggesting a negative impact on pest fitness. Correlation and principal component analyses supported a strong association between improved physiological parameters and reduced infestation levels. Overall, the study provides clear evidence that SA acts as an effective resistance inducer in tomato, strengthening both plant defence and productivity. The findings highlight the potential of SA as an eco-friendly and sustainable component in integrated pest management (IPM) programs, offering a promising alternative to conventional chemical insecticides for managing H. armigera in tomato cultivation.

References

  1. 1. Kumar S, Umrao RS, Kumar A, Patel VK, Debnath R, Kumar A. Evaluation of the efficacy of insecticides and bio-pesticides against Helicoverpa armigera (Hubner) on tomato. J Entomol Zool Stud. 2020;8(3):555-58.
  2. 2. Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflamm. 2014;1:139873. https://doi.org/10.1155/2014/139873
  3. 3. Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers. 2016;8(6):58. https://doi.org/10.3390/cancers8060058
  4. 4. Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytol. 2019;221:1724-41. https://doi.org/10.1111/nph.15545
  5. 5. Sharma D, Maqbool A, Ahmad H, Srivastava K, Kumar M, Vir V, et al. Effect of meteorological factors on the population dynamics of insect pests of tomato. Veg Sci. 2013;40(1):90-2.
  6. 6. Sapkal SD, Sonkamble MM, Gaikwad BB. Seasonal incidence of tomato fruit borer, Helicoverpa armigera (Hubner) on tomato, Lycopersicon esculentum (Mill) under protected cultivation. J Entomol Zool Stud. 2018;6(4):1911-4.
  7. 7. Sajjad M, Ashfaq M, Auhail A, Akhtar S. Screening of tomato genotypes for resistance to tomato fruit borer, Helicoverpa armigera in Pakistan. Pak J Agric Sci. 2011;48(1):59-62.
  8. 8. Dhaliwal GS, Jindal V, Mohindru B. Crop losses due to insect pests: global and Indian scenario. Indian J Entomol. 2015;77(2):165-68. https://doi.org/10.5958/0974-8172.2015.00033.4
  9. 9. Rath PC, Nath P. Screening of some tomato genotypes for susceptibility to the fruit borer Helicoverpa armigera Hübner at Varanasi. Veg Sci. 1997;24(2):153-56.
  10. 10. Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot. 2011;62(10):3321-38. https://doi.org/10.1093/jxb/err031
  11. 11. Baruah AALH, Chauhan R. Relative toxicity of three synthetic pyrethroids and endosulfan to susceptible strain of Helicoverpa armigera (Hübner) from Hissar (India). J Entomol Res. 1996;20(1):89-91.
  12. 12. Ali A, Choudhury RA, Ahmad Z, Rahman F, Khan FR, Ahmad SK. Some biological characteristics of Helicoverpa armigera on chickpea. Tunis J Plant Prot. 2009;4(1):99-106.
  13. 13. Gadhiya HA, Borad PK, Bhut JB. Bionomics and evaluation of different bio pesticides against Helicoverpa armigera (Hubner) Hardwick infesting groundnut. Bioscan. 2014;9(1):183-87.
  14. 14. War AR, Paulraj MG, War MY, Ignacimuthu S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav. 2011;6(11):1787-92. https://doi.org/10.4161/psb.6.11.17685
  15. 15. Zhang YF, Zhou HY, Tang YL, Luo YM, Zhang ZY. Hydrogen peroxide regulated salicylic acid-and jasmonic acid-dependent systemic defenses in tomato seedlings. Food Sci Technol. 2021;42:e54920. https://doi.org/10.1590/fst.54920
  16. 16. Saxena H, Negi H, Keshan R, Chitkara P, Kumar S, Chakraborty A, et al. A comprehensive investigation of lipid-transfer proteins from Cicer arietinum disentangles their role in plant defense against Helicoverpa armigera-infestation. Front Genet. 2023;14:1195554. https://doi.org/10.3389/fgene.2023.1195554
  17. 17. Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics: A biometrical approach. 3rd ed. New York: McGraw-Hill. 1997.
  18. 18. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. https://doi.org/10.1104/pp.24.1.1
  19. 19. Matin M, Brown JH, Ferguson H. Leaf water potential, relative water content and diffusive resistance as screening techniques for drought resistance in barley. J Agron. 1989;81(1):100-5. https://doi.org/10.2134/agronj1989.00021962008100010018x
  20. 20. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2025. https://cran.r-project.org/
  21. 21. Vicente MRS, Plasencia J. Salicylic acid beyond defense: its role in plant growth and development. J Exp Bot. 2011;62(10):3321-38. https://doi.org/10.1093/jxb/err031
  22. 22. War AR, Paulraj MG, Ignacimuthu S, Sharma HC. Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Manag Sci. 2015;71(1):72-82. https://doi.org/10.1002/ps.3764
  23. 23. Peng J, Deng X, Jia S, Huang J, Miao X, Huang Y. Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C. 2004;59(11-12):856-62. https://doi.org/10.1515/znc-2004-11-1215
  24. 24. Patel RS, Patel KA, Patil KS, Toke NR. Biology of Helicoverpa armigera Hubner on rose in laboratory condition. Pest Manag Hort Ecosyst. 2011;17(2):144-8.
  25. 25. Baikar AA, Naik KV. Biology of fruit borer, Helicoverpa armigera (Hübner) on chilli under laboratory conditions. Plant Arch. 2016;16(2):761-9.
  26. 26. Scott IM, Thaler JS, Scott JG. Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. J Chem Ecol. 2010;36(5):490-9. https://doi.org/10.1007/s10886-010-9780-8
  27. 27. He J, Chen F, Chen S, Lv G, Deng Y, Fang W, et al. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol. 2011;168(7):687-93. https://doi.org/10.1016/j.jplph.2010.10.009
  28. 28. Khafagy IF, Hassan HM, Asma MA. Potency of some elicitors plant as new approach to control some insect pests infesting okra and their effect on associated predators and okra production compared with the convention insecticide under field condition. Egypt J Plant Prot Res Inst. 2020;3(2):690-702.
  29. 29. Muthukumaran N, Ramanan M. Foliage feeding preference of fruit worm larvae towards tomato accessions as influenced by phyto and growth hormones. J Pharmacogn Phytochem. 2019;8(2):459-61.
  30. 30. Sivamani E, Rajendran N, Senrayan R, Ananthakrishnan TN, Jayaraman K. Influence of some plant phenolics on the activity of δ-endotoxin of Bacillus thuringiensis var. galleriae on Heliothis armigera. Entomol Exp Appl. 1992;63(3):243-48. https://doi.org/10.1111/j.1570-7458.1992.tb01580.x
  31. 31. Pulga PS, Henshel JM, Resende JTVD, Zeist AR, Moreira AFP, Gabriel A, et al. Salicylic acid treatments induce resistance to Tuta absoluta and Tetranychus urticae on tomato plants. Hortic Bras. 2020;38:288-94. https://doi.org/10.1590/s0102-053620200308
  32. 32. Agarwal AA. Induced responses to herbivory and increased plant performance. Science. 1998;279(5354):1201-2. https://doi.org/10.1126/science.279.5354.1201
  33. 33. Abdi N, Van Biljon A, Steyn C, Labuschagne MT. Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. Plants. 2022;11(14):1853. https://doi.org/10.3390/plants11141853
  34. 34. Singh SK, Singh PK. Effect of seed priming of tomato with salicylic acid on growth, flowering, yield and fruit quality under high temperature stress conditions. Int J Adv Res. 2016;4(2):723-7.
  35. 35. Abbas J, Ibrahim BA. Effect of salicylic acid in some vegetative and fruit traits of the black bean. Iraqi J Agric Sci. 2014;45(8):845-53.
  36. 36. Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot. 2010;68(1):14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
  37. 37. Karlidag H, Yildirim E, Turan M. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J Plant Nutr Soil Sci. 2009;172(2):270-6. https://doi.org/10.1002/jpln.200800058
  38. 38. Hayat S, Hasan SA, Fariduddin Q, Ahmad A. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact. 2008;3(4):297-304. https://doi.org/10.1080/17429140802320797
  39. 39. Yildirim E, Turan M, Guvenc I. Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber grown under salt stress. J Plant Nutr. 2008;31(3):593-612. https://doi.org/10.1080/01904160801895118
  40. 40. Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, et al. Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis and biochemical parameters. Omics. 2016;20(3):180-90. https://doi.org/10.1089/omi.2015.0161
  41. 41. Abdelkader MAI, Hamad EHA. Response o-f growth, yield and chemical constituents of roselle plant to foliar application of ascorbic acid and salicylic acid. Glob J Agric Food Safety Sci. 2014;1(2):126-36.
  42. 42. Khoshbakht D, Asgharei MR. Influence of foliar-applied salicylic acid on growth, gas-exchange characteristics and chlorophyll fluorescence in citrus under saline conditions. Photosynthetica. 2015;53:410-8. https://doi.org/10.1007/s11099-015-0109-2
  43. 43. Rao SR, Qayyum A, Razzaq A, Ahmad M, Mahmood I, Sher A. Role of foliar application of salicylic acid and l-tryptophan in drought tolerance of maize. J Anim Plant Sci. 2012;22(3):768-72.
  44. 44. Sakhabutdinova AR, Fatkhutdinova DR, Shakirova FM. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl Biochem Microbiol. 2004;40:501-5. https://doi.org/10.1023/B:ABIM.0000040675.29736.91
  45. 45. Kumar M, Malik S, Singh MK, Singh SP, Chaudhary V, Sharma VR. Optimization of spacing, doses of Vermi-compost and foliar application of salicylic acid on growth, flowering and soil health of Chrysanthemum (Dendranthema grandiflora Tzvelev) cv. “Guldasta”. Int J Agric Environ Biotechnol. 2019;12(3):213-24. https://doi.org/10.30954/0974-1712.08.2019.5
  46. 46. Preciado-Rangel P, Reyes-Pérez JJ, Ramírez-Rodríguez SC, Salas-Pérez L, Fortis-Hernández M, Murillo-Amador B, et al. Foliar aspersion of salicylic acid improves phenolic and flavonoid compounds and also the fruit yield in cucumber (Cucumis sativus L.). Plants. 2019;8(2):44. https://doi.org/10.3390/plants8020044
  47. 47. Mohammadi G, Khah EM, Petropoulos SA, Chachalis DB, Akbari F, Yarsi G. Effect of gibberellic acid and harvesting time on the seed quality of four okra cultivars. J Agric Sci. 2014;6(7):200-11. https://doi.org/10.5539/jas.v6n7p200
  48. 48. Sariñana-Aldaco O, Sánchez-Chávez E, Troyo-Diéguez E, Tapia-Vargas LM, Díaz-Pérez JC, Preciado-Rangel P. Foliar aspersion of salicylic acid improves nutraceutical quality and fruit yield in tomato. Agriculture. 2020;10(10):482. https://doi.org/10.3390/agriculture10100482
  49. 49. Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, Sarker U, et al. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress. 2024;11:100427. https://doi.org/https://doi.org/10.1016/j.stress.2024.100427

Downloads

Download data is not yet available.