Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Growth and yield performance of kale (Brassica oleracea L. var. acephala) in organic-based soilless substrates under greenhouse conditions

DOI
https://doi.org/10.14719/pst.10534
Submitted
8 July 2025
Published
09-02-2026

Abstract

Soil degradation and limited arable land continue to constrain vegetable production in upland areas of the Philippines. This study evaluated the growth and yield performance of kale (Brassica oleracea L. var. acephala) grown in organic-based soilless substrates under greenhouse conditions. A Completely Randomized Design (CRD) was employed with 5 treatments replicated three times. The treatments consisted of combinations of Processed Chicken Manure (PCM), Carbonized Rice Hull (CRH) and various organic additives, including Vermicompost (VC), Coconut Coir Dust (CCD), Spent Mushroom Compost (SMC) and a control (garden soil + river sand). Growth parameters measured included plant height (PH), root length (RL) and root weight (RW), while yield components comprised leaf length (LL), leaf number (LN), economic yield (EY), biological yield (BY) and harvest index (HI). Results showed that Treatment 1 (PCM + CRH + VC) and Treatment 3 (PCM + CRH + SMC) produced the tallest plants, longest leaves and highest yields. Treatment 2 (PCM + CRH + CCD) promoted superior root development, whereas the control (T₅) recorded the lowest performance in both growth and yield attributes. Organic-based soilless substrates, particularly those enriched with VC or SMC, significantly enhance kale growth and productivity under controlled conditions. The use of these sustainable substrate formulations offers a viable approach to improving vegetable production in land-constrained and ecologically fragile upland environments, supporting the goals of sustainable and climate-resilient agriculture.

References

  1. 1. World Population Review. Population of Philippines. 2026. https://worldpopulationreview.com/countries/philippines
  2. 2. Food and Agriculture Organization of the United Nations. The future of food and agriculture: trends and challenges. Rome: FAO; 2017. https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content
  3. 3. David CC, Briones RM, Inocencio AE, Intal PS Jr, Geron MPS, Ballesteros MM. Monitoring and evaluation of agricultural policy indicators. Makati City: Philippine Institute for Development Studies; 2012. (PIDS Discussion Paper Series No. 2012-26). https://www.econstor.eu/bitstream/10419/126894/1/pidsdps1226.pdf
  4. 4. Habito C, Briones R. Philippine agriculture over the years: performance, policies and pitfalls. 2005. https://siteresources.worldbank.org/INTPHILIPPINES/Resources/SAPAG-061505.pdf
  5. 5. Taer E, Taer A. Cultivating tomorrow: a comprehensive review of agricultural innovations in the Philippines (2018–2023). Agric Res. 2024;13:623-35. https://doi.org/10.1007/s40003-024-00803-w
  6. 6. Shreya, Bhati N, Sharma AK. Dietary diversification, supplementation, biofortification, and food fortification. In: Prakash A, Kuila A, editors. Nonthermal food processing, safety, and preservation. Hoboken (NJ): Wiley; 2024. p. 133-52. https://doi.org/10.1002/9781394186631.ch8
  7. 7. Laborte AG, Paguirigan NC, Moya PF, Nelson A, Sparks AH, Gregorio GB. Farmers’ preference for rice traits: insights from farm surveys in Central Luzon, Philippines, 1966-2012. PLoS ONE. 2015;10(8):e0136562. https://doi.org/10.1371/journal.pone.0136562
  8. 8. United Nations General Assembly. Transforming our world: the 2030 agenda for sustainable development. New York: United Nations; 2015. https://sdgs.un.org/2030agenda
  9. 9. UNESCO. Education for sustainable development goals: learning objectives. Paris: UNESCO; 2017. https://unesdoc.unesco.org/ark:/48223/pf0000247444
  10. 10. Rajendran S, Domalachenpa T, Arora H, Li P, Sharma A, Rajauria G. Hydroponics: exploring innovative sustainable technologies and applications across crop production, with emphasis on potato mini-tuber cultivation. Heliyon. 2024;10(5):e26823. https://doi.org/10.1016/j.heliyon.2024.e26823
  11. 11. Savvas D, Gruda N. Application of soilless culture technologies in the modern greenhouse industry: a review. Eur J Hortic Sci. 2018;83(5):280-93. https://doi.org/10.17660/eJHS.2018/83.5.2
  12. 12. Resh HM. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. 8th ed. Boca Raton (FL): CRC Press; 2022. https://doi.org/10.1201/9781003133254
  13. 13. Bugbee B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004;648:99-112. https://doi.org/10.17660/ActaHortic.2004.648.12
  14. 14. Gruda N. Do soilless culture systems have an influence on product quality of vegetables? J Appl Bot Food Qual. 2009;82(2):141-7. https://doi.org/10.18452/9433
  15. 15. Rajaseger G, Chan KL, Tan KY, Ramasamy S, Khin MC, Anburaj A, et al. Hydroponics: current trends in sustainable crop production. Bioinformation. 2023;19(9):925-38. https://doi.org/10.6026/97320630019925
  16. 16. Nogeire-McRae T, Ryan EP, Jablonski BB, Carolan M, Arathi HS, Brown CS, et al. The role of urban agriculture in a secure, healthy, and sustainable food system. BioScience. 2018;68(10):748-59. https://doi.org/10.1093/biosci/biy071
  17. 17. Bihari C, Ahamad S, Kumar M, Kumar A, Kamboj AD, Singh S, et al. Innovative soilless culture techniques for horticultural crops: a comprehensive review. Int J Environ Clim Change. 2023;13(10):4071-84. https://doi.org/10.9734/IJECC/2023/v13i103084
  18. 18. Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2011;16(1):251-80. https://doi.org/10.3390/molecules16010251
  19. 19. U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center. FoodData Central. https://fdc.nal.usda.gov/
  20. 20. Sanlier N, Guler SM. The benefits of Brassica vegetables on human health. J Hum Health Res. 2018;1(1):1-13.
  21. 21. Ali A, Niu G, Masabni J, Ferrante A, Cocetta G. Integrated nutrient management of fruits, vegetables, and crops through the use of biostimulants, soilless cultivation, and traditional and modern approaches—a mini review. Agriculture. 2024;14(8):1330. https://doi.org/10.3390/agriculture14081330
  22. 22. Dela Cruz AL, Sinco CP, Cantor ML, Viña MT, Bolaños JRG, Bordios RJB. Effects of varying nutrient solution to Brassica rapa “bokchoy” grow under hydroponic system. Am J Environ Clim. 2022;1(2):31-7. https://doi.org/10.54536/ajec.v1i2.485
  23. 23. Martinez D. Voices from the forest: integrating indigenous knowledge into sustainable upland farming. In: Williams R, editor. Pathways to sustainability in Southeast Asia. 2nd ed. Singapore: Academic Press; 2024. p. 112-45.
  24. 24. Salachna P, Piechocki R, Byczyńska A. Plant growth of curly kale under salinity stress. J Ecol Eng. 2017;18(1):119-24. https://doi.org/10.12911/22998993/66247
  25. 25. Thakulla D, Dunn B, Hu B. Soilless growing mediums. Oklahoma State University Extension; 2021. https://extension.okstate.edu/fact-sheets/soilless-growing-mediums.html
  26. 26. Chiomento JLT, Silva ICL, Fagundes LD, Homrich RT, Trentin NS, Trentin TDS, et al. Production of kale seedlings on substrates containing proportions of organic compost. Res Soc Dev. 2021;10(8):e58010817707. https://doi.org/10.33448/rsd-v10i8.17707
  27. 27. Oagile O, Ramalekane O, Mojeremane W, Matsuane C, Legwaila GM, Mathowa T. Growth and development response of kale (Brassica oleracea var. acephala L.) seedlings to different commercial growing media. Int J Plant Soil Sci. 2016;12(4):1-7. https://doi.org/10.9734/IJPSS/2016/28556
  28. 28. Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VAS, Kesavan AK, et al. Controlled environment ecosystem: a cutting-edge technology in speed breeding. ACS Omega. 2024;9(27):29114-38. https://doi.org/10.1021/acsomega.3c09060
  29. 29. Luu TTH, Le TL, Nguyen VT, Nguyen TDT, Green ID. Effect of three types of growing media and vermicompost tea on the growth and individual weight of Chinese kale (Brassica oleracea var. alboglabra Bailey). Trav Univ J Sci. 2023;13(4):52-9.
  30. 30. Akat Saracoglu O. Use of waste nutrition solution in soilless ornamental kale cultivation under saline conditions. J Agric Sci Technol. 2023;25(5):1167-77. https://doi.org/10.22034/jast.25.5.1167
  31. 31. Daryadar MKh, Mairapetyan SKh, Tovmasyan AH, Aleksanyan JS, Tadevosyan AH, Kalachyan LM, et al. Productivity of leafy green vegetable kale in soilless cultivation conditions. Net J Agric Sci. 2019;7(3):95-8. https://www.netjournals.org/pdf/NJAS/2019/3/19-027.pdf
  32. 32. Hendges A, Cecílio Filho AB, Barbieri RL, Tiuman TS, Silva DJMD, Santos AS. Agronomic performance and biological efficiency of kale intercropped with spice species. Rev Caatinga. 2019;32(1):7-15. https://doi.org/10.1590/1983-21252019v32n102rc

Downloads

Download data is not yet available.