Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Evolution and significance of CaM KMT- Calmodulin interaction- A journey of more than 40 years

DOI
https://doi.org/10.14719/pst.10555
Submitted
13 July 2025
Published
23-10-2025

Abstract

The calmodulin (CaM) family serves as the primary calcium sensor. Upon receiving calcium signals, CaM binds calcium ions and regulates the activity of numerous effector proteins. In plants, several CaM-binding proteins have been identified and their roles are gradually becoming clear. CaM functions through interactions with short peptide sequences in target proteins, inducing conformational changes that modulate their activity in response to fluctuations in intracellular calcium. CaM-binding proteins, including transcription factors, ion channels and metabolic enzymes, enable plants to efficiently respond to environmental stresses and pathogen attacks. Studies employing genetic, molecular and biochemical approaches have provided valuable insights into CaM’s role in regulating diverse targets to enhance stress resistance. Despite this progress, limited research has addressed CaM -lysine N-methyltransferase (CaM KMT), a crucial regulator of CaM. CaM KMT specifically trimethylates one specific lysine residue of CaM proteins, thereby influencing their function. This review summarizes research on CaM and its regulator CaM KMT, with a focus on Ca2+/CaM-mediated regulation of plant responses to abiotic and biotic stresses, the role of lysine methylation in CaM function, the discovery and implications of CaM Lys-116 methylation and CaM KMT-mediated regulation across plants and animals. In conclusion, while substantial progress has been achieved in understanding CaM signalling, the role of CaM KMT remains underexplored. Future studies integrating structural, functional genomics and evolutionary approaches will be critical to clarify CaM KMT-mediated regulation, with implications for engineering stress-resilient crops.

References

  1. 1. Wang T, Chen X, Ju C, Wang C. Calcium signaling in plant mineral nutrition: from uptake to transport. Plant Commun. 2023;4(5):100678. https://doi.org/10.1016/j.xplc.2023.100678
  2. 2. Costas-Ferreira C, Faro LR. Systematic review of calcium channels and intracellular calcium signaling: relevance to pesticide neurotoxicity. Int J Mol Sci. 2021;22(24):13376. https://doi.org/10.3390/ijms222413376
  3. 3. Wang C, Luan S. Calcium homeostasis and signaling in plant immunity. Curr Opin Plant Biol. 2024;77:102485. https://doi.org/10.1016/j.pbi.2023.102485
  4. 4. Negi NP, Prakash G, Narwal P, Panwar R, Kumar D, Chaudhry B. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions. Front Plant Sci. 2023;14:1248648. https://doi.org/10.3389/fpls.2023.1248648
  5. 5. Bootman MD, Bultynck G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb Perspect Biol. 2020;12(1):a038802. https://doi.org/10.1101/cshperspect.a038802
  6. 6. Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G. Calmodulin and calmodulin-like gene family in barley: identification, characterization and expression analyses. Front Plant Sci. 2022;13:964888. https://doi.org/10.3389/fpls.2022.964888
  7. 7. Gain H, Nandi D, Kumari D, Das A, Dasgupta SB, Banerjee J. Genome wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics. 2022;22(2):193-214.
  8. 8. Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics. 2024;25(1):992.
  9. 9. Dai C, Lee Y, Lee IC, Nam HG, Kwak JM. Calmodulin 1 regulates senescence and ABA response in Arabidopsis. Front Plant Sci. 2018;9:803. https://doi.org/10.3389/fpls.2018.00803
  10. 10. Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding. PLoS Genet. 2016;12(9):e1006255. https://doi.org/10.1371/journal.pgen.1006255
  11. 11. Saeng-ngam S, Takpirom W, Buaboocha T, Chadchawan S. The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol. 2012;55:198-208. https://doi.org/10.1007/s12374-011-0154-8
  12. 12. Sangchai P, Buaboocha T, Sirikantaramas S, Wutipraditkul N. Changes in physiological responses of OsCaM1-1 overexpression in the transgenic rice under dehydration stress. Biosci Biotechnol Biochem. 2022;86(9):1211-9. https://doi.org/10.1093/bbb/zbac115
  13. 13. Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci. 2016;7:806. https://doi.org/10.3389/fpls.2016.00806
  14. 14. Wang L, Liu Z, Han S, Liu P, Sadeghnezhad E, Liu M. Growth or survival: what is the role of calmodulin-like proteins in plant? Int J Biol Macromol. 2023;242:124733. https://doi.org/10.1016/j.ijbiomac.2023.124733
  15. 15. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. https://doi.org/10.3389/fenvs.2014.00053
  16. 16. Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. https://doi.org/10.3389/fpls.2019.00800
  17. 17. Petrov VD, Van Breusegem F. Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. 2012;2012:pls014. https://doi.org/10.1093/aobpla/pls014
  18. 18. Karita E, Yamakawa H, Mitsuhara I, Kuchitsu K, Ohashi Y. Three types of tobacco calmodulins characteristically activate plant NAD kinase at different Ca2+ concentrations and pHs. Plant Cell Physiol. 2004;45(10):1371-9. https://doi.org/10.1093/pcp/pch158
  19. 19. Turner WL, Waller JC, Vanderbeld B, Snedden WA. Cloning and characterization of two NAD kinases from Arabidopsis: identification of a calmodulin binding isoform. Plant Physiol. 2004;135(3):1243-55. https://doi.org/10.1104/pp.104.040428
  20. 20. Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell. 2007;19(3):1065-80. https://doi.org/10.1105/tpc.106.048884
  21. 21. Jiménez-Quesada MJ, Traverso JA, Alché JDD. NADPH oxidase-dependent superoxide production in plant reproductive tissues. Front Plant Sci. 2016;7:359. https://doi.org/10.3389/fpls.2016.00359
  22. 22. Gong M, Li YJ, Dai X, Tian M, Li ZG. Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. J Plant Physiol. 1997;150(5):615-21. https://doi.org/10.1016/S0176-1617(97)80328-8
  23. 23. Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol. 2003;132(3):1186-95.
  24. 24. Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 2009;149(4):1773-84. https://doi.org/10.1104/pp.108.133744
  25. 25. Sun XT, Li B, Zhou GM, Tang WQ, Bai J, Sun DY. Binding of the maize cytosolic Hsp70 to calmodulin and identification of calmodulin-binding site in Hsp70. Plant Cell Physiol. 2000;41(6):804-10. https://doi.org/10.1093/pcp/41.6.804
  26. 26. Cha JY, Su'udi M, Kim WY, Kim DR, Kwak YS, Son D. Functional characterization of orchardgrass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding. Plant Physiol Biochem. 2012;58:29-36. https://doi.org/10.1016/j.plaphy.2012.06.006
  27. 27. Van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol. 1999;121(3):705-14. https://doi.org/10.1104/pp.121.3.705
  28. 28. Townley HE, Knight MR. Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol. 2002;128(4):1169-72. https://doi.org/10.1104/pp.010814
  29. 29. Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem. 2010;285(10):7119-26. https://doi.org/10.1074/jbc.M109.035659
  30. 30. Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK. A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem. 2002;269(13):3193-204. https://doi.org/10.1046/j.1432-1033.2002.02994.x
  31. 31. Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, Rivero RM, Romero L. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry. 2002;59(5):473-8. https://doi.org/10.1016/S0031-9422(01)00481-2
  32. 32. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A. 2005;102(44):16107-12. https://doi.org/10.1073/pnas.0504437102
  33. 33. Rivetta A, Negrini N, Cocucci M. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ. 1997;20(5):600-8. https://doi.org/10.1111/j.1365-3040.1997.00072
  34. 34. Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, et al. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J. 2000;24(4):533-42. https://doi.org/10.1111/j.1365-313X.2000.00901
  35. 35. Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, et al. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci U S A. 1999;96(2):766-71. https://doi.org/10.1073/pnas.96.2.766
  36. 36. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004;135(4):2150-61. https://doi.org/10.1104/pp.104.041442
  37. 37. Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, et al. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol. 2014;15(2):145-60. https://doi.org/10.1111/mpp.12075
  38. 38. Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y. Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol. 2007;48(3):414-23. https://doi.org/10.1093/pcp/pcm011
  39. 39. Choi HW, Lee DH, Hwang BK. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant Microbe Interact. 2009;22(11):1389-400. https://doi.org/10.1094/MPMI-22-11-1389
  40. 40. Zhao Y, Liu W, Xu YP, Cao JY, Braam J, Cai XZ. Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol. 2013;13:70. https://doi.org/10.1186/1471-2229-13-70
  41. 41. Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, et al. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 2018;46(D1):D542-50. https://doi.org/10.1093/nar/gkx1104
  42. 42. Serre NB, Alban C, Bourguignon J, Ravanel S. An outlook on lysine methylation of non-histone proteins in plants. J Exp Bot. 2018;69(19):4569-81. https://doi.org/10.1093/jxb/ery231
  43. 43. Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol. 2014;10(4):724. https://doi.org/10.1002/msb.134974
  44. 44. Alquezar C, Arya S, Kao AW. Tau post-translational modifications: dynamic transformers of tau function, degradation and aggregation. Front Neurol. 2020;11:595532. https://doi.org/10.3389/fneur.2020.595532
  45. 45. Falnes PO, Jakobsson ME, Davydova E, Ho A, Małecki J. Protein lysine methylation by seven-β-strand methyltransferases. Biochem J. 2016;473(14):1995-2009. https://doi.org/10.1042/BCJ20160117
  46. 46. Maas MN, Hintzen JC, Porzberg MR, Mecinović J. Trimethyllysine: from carnitine biosynthesis to epigenetics. Int J Mol Sci. 2020;21(24):9451. https://doi.org/10.3390/ijms21249451
  47. 47. Luo M. Chemical and biochemical perspectives of protein lysine methylation. Chem Rev. 2018;118(14):6656-705. https://doi.org/10.1021/acs.chemrev.8b00008
  48. 48. Xiao L, Liang H, Jiang G, Ding X, Liu X, Sun J, et al. Proteome-wide identification of non-histone lysine methylation in tomato during fruit ripening. J Adv Res. 2022;42:177-88. https://doi.org/10.1016/j.jare.2022.02.013
  49. 49. Klee CB, Vanaman TC. Calmodulin. Adv Protein Chem. 1982;35:213-321. https://doi.org/10.1016/S0065-3233(08)60470-2
  50. 50. Gregori L, Marriott D, West CM, Chau V. Specific recognition of calmodulin from Dictyostelium discoideum by the ATP, ubiquitin-dependent degradative pathway. J Biol Chem. 1985;260(9):5232-5. https://doi.org/10.1016/S0021-9258(18)89009-3
  51. 51. Roberts DM, Burgess WH, Watterson DM. Comparison of the NAD kinase and myosin light chain kinase activator properties of vertebrate, higher plant and algal calmodulins. Plant Physiol. 1984;75(3):796-8. https://doi.org/10.1104/pp.75.3.796
  52. 52. Yun SJ, Oh SH. Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Mol Cells. 1998;8(2):125-9. https://doi.org/10.1016/S1016-8478(23)13403-0
  53. 53. Roberts DM, Rowe PM, Siegel FL, Lukas TJ, Watterson DM. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J Biol Chem. 1986;261(4):1491-4. https://doi.org/10.1016/S0021-9258(17)35963-X
  54. 54. Harding SA, Oh SH, Roberts DM. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J. 1997;16(6):1137. https://doi.org/10.1093/emboj/16.6.1137
  55. 55. Roberts DM, Besl L, Oh SH, Masterson RV, Schell J, Stacey G. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992;89(17):8394-8. https://doi.org/10.1073/pnas.89.17.8394
  56. 56. Gregori L, Marriott D, Putkey JA, Means AR, Chau V. Bacterially synthesized vertebrate calmodulin is a specific substrate for ubiquitination. J Biol Chem. 1987;262(6):2562-7. https://doi.org/10.1016/S0021-9258(18)61542-X
  57. 57. Zielinski RE. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Biol. 1998;49(1):697-725. https://doi.org/10.1146/annurev.arplant.49.1.697
  58. 58. Magen S, Magnani R, Haziza S, Hershkovitz E, Houtz R, Cambi F. Human calmodulin methyltransferase: expression, activity on calmodulin and Hsp90 dependence. PLoS One. 2012;7(12):e52425. https://doi.org/10.1371/journal.pone.0052425
  59. 59. Banerjee J, Magnani R, Nair M, Dirk LM, DeBolt S, Maiti IB. Calmodulin-mediated signal transduction pathways in Arabidopsis are fine-tuned by methylation. Plant Cell. 2013;25(11):4493-511. https://doi.org/10.1105/tpc.113.119115
  60. 60. Nandi D, Gain H, Paul S, Mitra A, Banerjee J. Bioinformatics analyses of rice calmodulin-lysine N-methyltransferases gene (OsCaM KMT) and characterization of its promoter from Oryza sativa L. subsp. indica through transgenic approach. South Afr J Bot. 2022;150:873-85.
  61. 61. Bergey DR, Kandel R, Tyree BK, Dutt M, Dhekney SA. The role of calmodulin and related proteins in plant cell function: an ever-thickening plot. Springer Sci Rev. 2014;2(1):145-59.
  62. 62. Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001;151(1):35-66. https://doi.org/10.1046/j.1469-8137.2001.00154
  63. 63. Serre NB, Sarthou M, Gigarel O, Figuet S, Corso M, Choulet J, et al. Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress. Plant Cell Environ. 2020;43(3):760-74. https://doi.org/10.1111/pce.13692
  64. 64. Baliardini C, Meyer CL, Salis P, Saumitou-Laprade P, Verbruggen N. Cation exchanger1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis spp. Plant Physiol. 2015;169(1):549-59. https://doi.org/10.1104/pp.15.01037
  65. 65. Suzuki N. Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol. 2005;22(1):19-25. https://doi.org/10.5511/plantbiotechnology.22.19
  66. 66. Pham K, Dhulipala G, Gonzalez WG, Gerstman BS, Regmi C, Chapagain PP, et al. Ca2+ and Mg2+ modulate conformational dynamics and stability of downstream regulatory element antagonist modulator. Protein Sci. 2015;24(5):741-51.
  67. 67. Grabarek Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Biochim Biophys Acta Mol Cell Res. 2011;1813(5):913-21.
  68. 68. Zhang M, Shan H, Gu Z, Wang D, Wang T, Wang Z. Increased expression of calcium/calmodulin-dependent protein kinase type II subunit delta after rat traumatic brain injury. J Mol Neurosci. 2012;46:631-43. https://doi.org/10.1007/s12031-011-9651-y
  69. 69. Magnani R, Dirk LM, Trievel RC, Houtz RL. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat Commun. 2010;1(1):43. https://doi.org/10.1038/ncomms1044
  70. 70. Pech LL, Nelson DL. Purification and characterization of calmodulin (lysine 115) N-methyltransferase from Paramecium tetraurelia. Biochim Biophys Acta Gen Subj. 1994;1199(2):183-94. https://doi.org/10.1016/0304-4165(94)90114-7
  71. 71. Morino H, Kawamoto T, Miyake M, Kakimoto Y. Purification and properties of calmodulin-lysine N-methyltransferase from rat brain cytosol. J Neurochem. 1987;48(4):1201-8. https://doi.org/10.1111/j.1471-4159
  72. 72. Towheed A, Hietanen CL, Kamath VG, Singh LN, Ho A, Engelstad K, et al. Hypotonia-cystinuria 2p21 deletion syndrome: intrafamilial variability of clinical expression. Ann Clin Transl Neurol. 2021;8(11):2199-204. https://doi.org/10.1002/acn3.51464
  73. 73. Bartholdi D, Asadollahi R, Oneda B, Schmitt-Mechelke T, Tonella P, Baumer A, et al. Further delineation of genotype–phenotype correlation in homozygous 2p21 deletion syndromes: first description of patients without cystinuria. Am J Med Genet A. 2013;161(8):1853-9. https://doi.org/10.1002/ajmg.a.35994
  74. 74. Haziza S, Magnani R, Lan D, Keinan O, Saada A, Hershkovitz E, et al. Calmodulin methyltransferase is required for growth, muscle strength, somatosensory development and brain function. PLoS Genet. 2015;11(8):e1005388. https://doi.org/10.1371/journal.pgen.1005388
  75. 75. Cho HJ, Lee DJ, Yi YS. Anti-inflammatory activity of calmodulin-lysine N-methyltransferase through suppressing the caspase-11 non-canonical inflammasome. Immunobiology. 2023;228(6):152758. https://doi.org/10.1016/j.imbio.2023.152758
  76. 76. Yoo JH, Park CY, Kim JC, Heo WD, Cheong MS, Park HC. Direct interaction of a divergent CaM isoform and the transcription factor MYB2 enhances salt tolerance in Arabidopsis. J Biol Chem. 2005;280(5):3697-706. https://doi.org/10.1074/jbc.M408237200
  77. 77. Kaewneramit T, Buaboocha T, Sangchai P, Wutipraditkul N. OsCaM1-1 overexpression in the transgenic rice mitigated salt-induced oxidative damage. Biol Plant. 2019;63:335. https://doi.org/10.32615/bp.2019.039
  78. 78. Kushwaha R, Singh A, Chattopadhyay S. Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell. 2008;20(7):1747-59. https://doi.org/10.1105/tpc.107.057612
  79. 79. Landoni M, De Francesco A, Galbiati M, Tonelli C. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. Plant Mol Biol. 2010;74:235-47.

Downloads

Download data is not yet available.