Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Optimizing pollen viability and in vitro pollen germination potential in foxtail millet genotypes

DOI
https://doi.org/10.14719/pst.10618
Submitted
13 July 2025
Published
10-12-2025

Abstract

Foxtail millet is a C4 model crop with very small florets. To improve the yield of any crop, pollen germination and development are important to know, which is still not well-known in foxtail millet. The present investigation was conducted in the Department of Seed Science and Technology, Hemvati Nandan Bahuguna Garhwal University (HNBGU), Srinagar, Garhwal, Uttarakhand, during the Kharif seasons of 2023 and 2024 to study flowering phenology and achieve synchronous flowering for the development of a hybrid seed production programme. The study involved 14 genotypes, including 12 landraces and 2 varieties as checks. The timing of pollination in foxtail millet germplasm was observed to be approximately 1-2 hrs. Further to understand the pollen viability, in vitro pollen germination and development of pollen tube under the influence of different media and time durations at a temperature of 25 °C with 85 % relative humidity. Significant variation in pollen viability and pollen germination was recorded across the different media tested. The maximum pollen viability, lasting up to 5 hr, was observed in the genotype FMC-1, indicating its potential for crop improvement. A combination of sucrose, boric acid and potassium nitrate (KNO3) was found to be the best media compared to others, such as 2,3,5-triphenyl tetrazolium chloride (TTC), acetocarmine, boric acid + sucrose, as pollen grains began germinating within 30 min in most genotypes. This study provides valuable insights for designing a crossbreeding programme in foxtail millet.

References

  1. 1. Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants. 2020;6(9):1167–78. https://doi.org/10.1038/s41477-020-0747-7
  2. 2. Meng X, Lian Y, Liu Q, Zhang P, Jia Z, Han Q. Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas. Agric Water Manag. 2020;238:106220. https://doi.org/10.1016/j.agwat.2020.106220
  3. 3. Li L, Cheng R, Wang G, Dong L, Shi Z, Zhang T. Research progress of application of heterosis and sterile line in foxtail millet (Setaria italica). J Agric Biotechnol. 2018;26:1787–96.
  4. 4. Li G, Tang J, Zheng J, Chu C. Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J. 2021;9(3):577–89. https://doi.org/10.1016/j.cj.2021.03.014
  5. 5. Nandini KM, Sridhara S. Response of growth yield and quality parameters of foxtail millet genotypes to different planting density. Int J Curr Microbiol Appl Sci. 2019;8(3):1765–73. https://doi.org/10.20546/ijcmas.2019.802.208
  6. 6. Wu J, Zhang J, Ge Z, Xing L, Han S, Shen C, et al. Impact of climate change on maize yield in China from 1979 to 2016. J Integr Agric. 2021;20(2):289–99. https://doi.org/10.1016/S2095-3119(20)63244-0
  7. 7. Lata C, Gupta S, Prasad M. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol. 2012;32(4):1–16.
  8. 8. Doust AN, Kellogg EA, Devos KM, Bennetzen JL. Foxtail millet: A sequence-driven grass model system. Plant Physiol. 2009;149(1):137–41. https://doi.org/10.1104/pp.108.12962
  9. 9. Rizal G, Acebron K, Mogul R, Karki S, Larazo N, Quick WP. Study of flowering pattern in Setaria viridis, a proposed model species for C4 photosynthesis research. J Bot. 2013;2013:7. https://doi.org/10.1155/2013/592429
  10. 10. Xing G, Jin M, Qu R, Zhang J, Han Y, Han Y, et al. Genome-wide investigation of histone acetyltransferase gene family and its responses to biotic and abiotic stress in foxtail millet (Setaria italica (L.) P. Beauv). BMC Plant Biol. 2022;22:292. https://doi.org/10.1186/s12870-022-03676-9
  11. 11. Diao X, Jia G. Foxtail millet breeding in China. In: Doust A, Diao X, editors. Genetics and Genomics of Setaria. Cham: Springer. 2017. p. 93–113. https://doi.org/10.1007/978-3-319-45105-3_6
  12. 12. Hodge JG, Doust AN. Morphological development of Setaria viridis from germination to flowering. Genet Genom Setaria. 2017;19:161–75. https://doi.org/10.1007/978-3-319-45105-3_10
  13. 13. Siles MM, Baltensperger DD, Nelson LA. Technique for artificial hybridization of foxtail millet (Setaria italica (L.) Beauv.). Crop Sci. 2001;41(5):1408–12. https://doi.org/10.2135/cropsci2001.4151408x
  14. 14. Impe D, Reitz J, Köpnick C, Rolletschek H, Börner A, Senula A, et al. Assessment of pollen viability for wheat. Front Plant Sci. 2020;10:1588. https://doi.org/10.3389/fpls.2019.01588
  15. 15. Pauldasan A, Vipin P, Durai A, Nicodemus A. Hybridisation, pollen pistil interactions and hybrid seed set among Casuarina species. Aust J Bot. 2022;70(3):174–86. https://doi.org/10.1071/BT21120
  16. 16. Palanivelu R, Tsukamoto T. Path finding in angiosperm reproduction: Pollen tube guidance by pistils ensures successful double fertilization. WIREs Dev Biol. 2012;1(1):96–113. https://doi.org/10.1002/wdev.6
  17. 17. Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, Guo X, et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat Plants. 2017;3:1–5. https://doi.org/10.1038/nplants.2017.79
  18. 18. Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The long journey of pollen tube in the pistil. Int J Mol Sci. 2018;19(11):3529. https://doi.org/10.3390/ijms19113529
  19. 19. Geitmann A, Steer M. The architecture and properties of the pollen tube cell wall. In: The Pollen Tube: A Cellular and Molecular Perspective. New York: Springer. 2009. p. 177–200. https://doi.org/10.1007/7089_049
  20. 20. Brutnell TP, Wang L, Swartwood K. Setaria viridis: A model for C4 photosynthesis. Plant Cell. 2010;22(8):2537–44. https://doi.org/10.1105/tpc.110.075309
  21. 21. Liu Q, Yang J, Wang X, Zhao Y. Studies on pollen morphology, pollen vitality and preservation methods of Gleditsia sinensis Lam (Fabaceae). Forests. 2023;14(2):243. https://doi.org/10.3390/f14020243
  22. 22. Razzaq MK, Rauf S, Khurshid M, Iqbal S, Bhat JA, Farzand A. Pollen viability an index of abiotic stresses tolerance and methods for the improved pollen viability. Pak J Agric Res. 2019;32(3):609–24. https://doi.org/10.17582/journal.pjar/2019/32.4.609.624
  23. 23. Shi W, Li X, Schmidt RC, Struik PC, Yin X, Jagadish SK. Pollen germination and in vivo fertilization in response to high temperature during flowering in hybrid and inbred rice. Plant Cell Environ. 2018;41(6):1287–97. https://doi.org/10.1111/pce.13146
  24. 24. Jayaprakash P. Pollen germination in vitro. In: Mokwala P, editor. Pollination in Plants. London: IntechOpen. 2018.
  25. 25. Tushabe D, Rosbakh S. A compendium of in vitro germination media for pollen research. Front Plant Sci. 2021;12:709945. https://doi.org/10.3389/fpls.2021.709945
  26. 26. Nassar NMA, Santos ED, Sro D. The transference of apomixis genes from Manihot neusana Nassar to cassava, M. esculenta Crantz. Hereditas. 2000;132(2):167–70. https://doi.org/10.1111/j.1601-5223.2000.00167.x
  27. 27. Kearns CA, Inouye DW. Techniques for pollination biologists. Niwot (CO): University Press of Colorado. 1993. p. 77–151.
  28. 28. Stanley RG, Linskens HF. Pollen: Biology, biochemistry, management. New York: Springer. 1974. p. 37. https://doi.org/10.1007/978-3-642-65905-8
  29. 29. Ilgin M, Ergenoglu F, Caglar S. Viability, germination and amount of pollen in selected caprifig types. Pak J Bot. 2007;39(1):9–14.
  30. 30. Karun A, Sajini KK, Niral V, Amarnath CH, Remya P, Rajesh MK, et al. Coconut (Cocos nucifera L.) pollen cryopreservation. Cryo Lett. 2014;35(5):407–17.
  31. 31. Carmichael JS. Flowering and reproduction | Fertilization. In: Thomas B, editor. Encyclopedia of Applied Plant Sciences. 2nd ed. Oxford: Elsevier; 2003. p. 325–33. https://doi.org/10.1016/B0-12-227050-9/00017-X
  32. 32. Wang M, Zhu X, Peng G, Liu M, Zhang S, Chen M, et al. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice. Mol Plant. 2022;15(6):956–72. https://doi.org/10.1016/j.molp.2022.04.004
  33. 33. Gins EM, Egorova AS, Sivolapova AB, Semenov AZ, Apshev KhKh, Meleshin AA, et al. Pollen fertility assessment through acetocarmine staining and in vitro germination in Solanum tuberosum L. SABRAO J Breed Genet. 2022;54(5). https://doi.org/10.54910/sabrao2022.54.5
  34. 34. Su M, Wang D, Li ZD, Hao JH, Dong S, Yuan X, et al. Establishment of in vitro pollen germination system in C4 model plant foxtail millet. Plant Cell Tissue Organ Cult. 2024;156:98. https://doi.org/10.1007/s11240-024-02693-w
  35. 35. Das D, Mondal S, Mandal S. Studies on pollen viability and in vitro pollen germination of Nymphoides indica (L.) Kuntz. Int J Res Anal Rev. 2018;5(4):461–7.
  36. 36. Lata S, Sharma G, Garg S, Mishra G. Pollen viability, germination and stigma receptivity studies in different strawberry cultivars. Agric Res J. 2018;55(4):627–32. https://doi.org/10.5958/2395-146X.2018.00115.1
  37. 37. Teng CC, Zhang YC. The influence of boric acid and sucrose on the in vitro germination of potato pollen. Seed. 2009;28(1):15–20.
  38. 38. Liang GJ, Huang GP, Deng L. Effect of Boron, Sugar, Calcium and DA-6 on the growth of loquat pollen tube. J Zhaoqing Univ. 2011;32:50–6.
  39. 39. Zhang GS. Effect of boron and sugar on the growth of Cucurbita maxima pollen tube. J Heze Univ. 2000;22:54–5.
  40. 40. Zhang T, Huang M. The effect of sucrose and PEG on the in vitro pollen germination of Camellia. North Hortic. 2009;1:101–2.
  41. 41. Jayaprakash P, Peter J, Shajitha P, Balaji V, Nisha R, Geetha M, et al. Development of in vitro pollen germination protocol for recalcitrant triticale pollen (× Triticosecale Wittmack). Cereal Res Commun. 2022;51:189–96. https://doi.org/10.1007/s42976-022-00275-0
  42. 42. Liu LY, Huang LY, Li Y. Influence of boric acid and sucrose on the germination and growth of Areca pollen. Am J Plant Sci. 2013;4(9):1669–74. https://doi.org/10.4236/ajps.2013.48202
  43. 43. Naik A, Akhtar S, Chattopadhyay A, Thapa U, Hazra P. In vitro teasle gourd pollen germination and pollen tube development as affected by sucrose, boric acid, and inorganic salts. Int J Veg Sci. 2016;22(3):209–16. https://doi.org/10.1080/19315260.2015.1008665
  44. 44. Khan I, Wu J, Sajjad M. Pollen viability-based heat susceptibility index (HSIpv): A useful selection criterion for heat-tolerant genotypes in wheat. Front Plant Sci. 2022;13:1064569. https://doi.org/10.3389/fpls.2022.1064569
  45. 45. De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2014;37(1):1–18. https://doi.org/10.1111/pce.12142
  46. 46. Bheemanahalli R, Sunoj VJ, Saripalli G, Prasad PV, Balyan HS, Gupta PK. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Sci. 2019;59(2):684–96. https://doi.org/10.2135/cropsci2018.05.0292
  47. 47. Bheemanahalli R, Ramamoorthy P, Poudel S, Samippan S, Wijewardane N, Reddy KR. Effect of drought and heat stresses during reproductive stage on pollen germination, yield and leaf reflectance properties in maize (Zea mays L.). Plant Direct. 2022;6(4):e434. https://doi.org/10.1002/pld3.434
  48. 48. Nugroho R, Suwarno WB, Khumaida N, Ardie SW. Male-sterile induction method in foxtail millet (Setaria italica). Biodiversitas. 2020;21(9):4325–30. https://doi.org/10.13057/biodiv/d210951
  49. 49. Dafni A, Firmage DH. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol. 2000;222:113–32. https://doi.org/10.1007/BF00984098

Downloads

Download data is not yet available.