Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Exploring the plant volatile organic compounds in plant–insect interaction: A bibliometric analysis

DOI
https://doi.org/10.14719/pst.10649
Submitted
15 July 2025
Published
09-10-2025

Abstract

Plant volatile organic compounds (VOCs) are key components in plant-insect interactions, greatly influencing herbivory, pollination and tritrophic interactions. Despite the growing body of research exploring the chemical, ecological and applied aspects of VOCs, a systematic bibliometric synthesis to consolidate existing knowledge and identify emerging trends is still lacking. This review employs bibliometric and thematic analyses on 362 peer-reviewed publications to map the intellectual landscape of VOC research in plant–insect ecology. Data were retrieved through a structured search strategy and screened based on language and publication type. Notable trends include a sharp rise in VOC-related publications after 2013, with major contributions from journals such as Journal of Chemical Ecology and New Phytologist. Leading authors such as M. Dicke and T.C.J. Turlings have helped shape the field's direction, while collaborative networks reveal strong international partnerships, especially among the US, China, Germany and the UK as determined by citation frequency and network centrality metrics. Thematic mapping shows central focus areas on insect responses, plant defences and chemical signalling, with rising interdisciplinary interest in genomics, microbial ecology and climate impacts. Notably, gaps persist in macroevolutionary studies, belowground VOC signalling and field-based validations. This review highlights the evolving research frontiers and encourages deeper integration of VOC research with sustainable agriculture, molecular ecology and environmental resilience. These findings provide a valuable reference for guiding future studies and fostering innovation in plant-insect chemical ecology.

References

  1. 1. Deori D, Kalita S. Volatile mediated plant-insect interactions: A review. Int J Zool Invest. 2022;8(1):291–304. https://doi.org/10.33745/ijzi.2022.v08i01.033
  2. 2. Shrivastava G, Rogers M, Wszelaki A, Panthee DR, Chen F. Plant volatiles-based insect pest management in organic farming. Crit Rev Plant Sci. 2010;29(2):123-33. https://doi.org/10.1080/07352681003617483
  3. 3. Montagné N. The role of volatile organic compounds in plant-insect communication. Biol aujourd'hui. 2024;218(3-4):141-4. https://doi.org/10.1051/jbio/2024016
  4. 4. Paré PW, Farag MA. Natural enemy attraction to plant volatiles. In: Capinera JL, editor. Encyclopedia of Entomology. Dordrecht: Springer; 2008. p. 2567–70.
  5. 5. Jander G. Molecular ecology of plant volatiles in interactions with insect herbivores. J Exp Bot. 2022;73(2):449-62. https://doi.org/10.1093/jxb/erab413
  6. 6. Van Dam NM, Poppy GM. Why plant volatile analysis needs bioinformatics–detecting signal from noise in increasingly complex profiles. Plant Biol. 2007;9(S1):12-9. https://doi.org/10.1055/s-2007-964961
  7. 7. Menacer K, Hervé M, Lapeyre B, Vedrenne M, Cortesero AM. Plant volatiles play differential roles in pre and post alighting phases in a specialist phytophagous insect. C R Chim. 2023;26(S2):1-1. https://doi.org/10.5802/crchim.233
  8. 8. Binyameen M, Ali Q, Roy A, Schlyter F. Plant volatiles and their role in insect olfaction. In: Witzgall P, Kirsch P, Cork A, editors. Plant-pest interactions: from molecular mechanisms to chemical ecology. Cham: Springer; 2021. p. 127–56. https://doi.org/10.1007/978-981-15-2467-7_7
  9. 9. Clavijo Mccormick AN, Gershenzon J, Unsicker SB. Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. Plant cell Environ. 2014;37(8):1836-44. https://doi.org/10.1111/pce.12357
  10. 10. Schwery O, Sipley BN, Braga MP, Yang Y, Rebollo R, Zu P. Plant scent and plant–insect interactions-Review and outlook from a macroevolutionary perspective. J Syst Evol. 2023;61(3):465-86. https://doi.org/10.1111/jse.12933
  11. 11. Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G et al. Volatile compound-mediated plant–plant interactions under stress with the tea plant as a model. Hortic Res. 2023;10(9):uhad143. https://doi.org/10.1093/hr/uhad143
  12. 12. Kirana R, Anwariudin MJ, Setiawati W. The diversity of chili pepper volatile compounds and its relationship to insect pests. In: IOP Conf Ser: Earth Environ Sci. 2021;948(1):012042. https://doi.org/10.1088/1755-1315/948/1/012042
  13. 13. Niu D, Xu L, Lin K. Multitrophic and multilevel interactions mediated by volatile organic compounds. Insects. 2024;15(8):572. https://doi.org/10.3390/insects15080572
  14. 14. Deng Y, Yu X, Yin J, Chen L, Zhao N, Gao Y et al. Epichloë Endophyte enhanced insect resistance of host grass Leymus chinensis by affecting volatile organic compound emissions. J Chem Ecol. 2024;50(12):1067-76. https://doi.org/10.1007/s10886-023-01459-6
  15. 15. Chang X, Wang F, Fang Q, Chen F, Yao H, Gatehouse AM et al. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. Plant Cell Environ. 2021;44(8):2700-15. https://doi.org/10.1111/pce.14069
  16. 16. Díaz MA, Coy-Barrera E, Rodríguez D. Attraction behavior and functional response of orius insidiosus to semiochemicals mediating rose–western flower thrips interactions. Agriculture. 2025;15(4):431. https://doi.org/10.3390/agriculture15040431
  17. 17. Santos AA, Xiao L, Labandeira CC, Néraudeau D, Dépré É, Moreau JD et al. Plant–insect interactions from the mid-Cretaceous at Puy-Puy (Aquitaine Basin, western France) indicates preferential herbivory for angiosperms amid a forest of ferns, gymnosperms and angiosperms. Bot Lett. 2022;169(4):568-87. https://doi.org/10.1080/23818107.2022.2092772
  18. 18. Langford B, Ryalls JM, Mullinger NJ, Hayden P, Nemitz E, Pfrang C et al. Mapping the effects of ozone pollution and mixing on floral odour plumes and their impact on plant-pollinator interactions. Environ Pollut. 2023;336:122336. https://doi.org/10.1016/j.envpol.2023.122336
  19. 19. Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW et al. Broad diversity in monoterpene–sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. Am J Bot. 2022;109(12):2051-67.
  20. 20. Ramya M, Jang S, An HR, Lee SY, Park PM, Park PH. Volatile organic compounds from orchids: From synthesis and function to gene regulation. Int J Mol Sci. 2020;21(3):1160. https://doi.org/10.3390/ijms21031160
  21. 21. Zeng L, Jin S, Xu YQ, Granato D, Fu YQ, Sun WJ et al. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Crit Rev Food Sci Nutr. 2024;64(1):76-86. https://doi.org/10.1080/10408398.2022.2104213
  22. 22. Ling S, Qiu H, Xu J, Gu Y, Yu J, Wang W et al. Volatile dimethyl disulfide from guava plants regulate developmental performance of Asian citrus psyllid through activation of defense responses in neighboring orange plants. Int J Mol Sci. 2022;23(18):10271. https://doi.org/10.3390/ijms231810271
  23. 23. Shao D, Schlagnhaufer C, Bandara A, Esker PD, Kim SH, Kellogg J et al. Plant-associated volatile organic compound (VOC) database (PVD): a resource supporting research on VOCs produced by plants and plant-associated microbes. PhytoFrontier. 2024;4(4):840-2. https://doi.org/10.1094/PHYTOFR-08-24-0088-A
  24. 24. Fu X, Zhou Y, Zeng L, Dong F, Mei X, Liao Y et al. Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Adv. 2017;7(31):19363-72. https://doi.org/10.1039/C7RA00766C
  25. 25. Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW et al. Broad diversity in monoterpene–sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. Am J Bot. 2022;109(12):2051-67. https://doi.org/10.1002/ajb2.16093
  26. 26. Lv M, Zhang L, Wang Y, Ma L, Yang Y, Zhou X et al. Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value. Hortic Res. 2024:uhae220. https://doi.org/10.1093/hr/uhae220
  27. 27. Zhang L, Su QF, Wang LS, Lv MW, Hou YX, Li SS. Linalool: A ubiquitous floral volatile mediating the communication between plants and insects. J Syst Evol. 2023;61(3):538-49. https://doi.org/10.1111/jse.12930
  28. 28. Matsui K, Engelberth J. Green leaf volatiles-the forefront of plant responses against biotic attack. Plant Cell Physiol. 2022;63(10):1378-90. https://doi.org/10.1093/pcp/pcac117
  29. 29. Kheam S. Insect-plant interactions within cultivar mixtures. Acta Univ Agric Sue. 2024;2024(26).
  30. 30. Byers KJ, Jacobs RN. Quantitative analysis of gas chromatography-coupled electroantennographic detection (GC-EAD) of plant volatiles by insects. bioRxiv. 2024;2024-12. https://doi.org/10.1101/2024.12.01.626223
  31. 31. Qian C, Xie W, Su Z, Wen X, Ma T. Quantitative analysis and characterization of floral volatiles and the role of active compounds on the behavior of Heortia vitessoides. Front Plant Sci. 2024;15:1439087. https://doi.org/10.3389/fpls.2024.1439087
  32. 32. Serdo DF. Insects’ perception and behavioral responses to plant semiochemicals. PeerJ. 2024;12:e17735. https://doi.org/10.7717/peerj.17735
  33. 33. Asiri A, Perkins SE, Müller CT. The smell of infection: Disease surveillance in insects using volatile organic compounds. Agric For Entomol. 2025;27(1):81-9. https://doi.org/10.1111/afe.12651
  34. 34. Zhao Q, Liu C, Xie S, Chen G, Yang X, Xu Y et al. Host selection behavior of Spodoptera exigua (Lepidoptera: Noctuidae, Hübner, 1808) in response to Rosmarinus officinalis (Lamiales: Lamiaceae, Linnaeus, 1753) volatiles. Arthropod Plant Interact. 2025;19(1):1-1. https://doi.org/10.1007/s11829-024-10124-y
  35. 35. Huang S, Zhang W, Zhang Y, Jia H, Zhang X, Li H et al. Volatile chemical cues emitted by an agricultural companion plant (Cnidium monnieri) attract predatory lacewings (Chrysoperla sinica). Biol Control. 2024;192:105516. https://doi.org/10.1016/j.biocontrol.2024.105516
  36. 36. Khajuria M, Supraja KV, Srija P, Manideep KS, Harideep G, Morabad PB. The role of herbivore-induced plant volatiles in tri-trophic interactions and pest management. J Adv Biol Biotechnol. 2024;27(11):763-70. https://doi.org/10.9734/jabb/2024/v27i111659
  37. 37. Staton T, Williams DT. A meta-analytic investigation of the potential for plant volatiles and sex pheromones to enhance detection and management of Lepidopteran pests. Bull Entomol Res. 2023;113(6):725-34. https://doi.org/10.1017/S0007485323000457
  38. 38. Montejano-Ramírez V, Ávila-Oviedo JL, Campos-Mendoza FJ, Valencia-Cantero E. Microbial volatile organic compounds: insights into plant defense. Plants. 2024;13(15):2013. https://doi.org/10.3390/plants13152013
  39. 39. Masui N, Shiojiri K, Agathokleous E, Tani A, Koike T. Elevated O3 threatens biological communications mediated by plant volatiles: A review focusing on the urban environment. Crit Rev Environ Sci Technol. 2023;53(22):1982-2001. https://doi.org/10.1080/10643389.2023.2202105
  40. 40. Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. Plant J. 2023;114(5):1164-77. https://doi.org/10.1111/tpj.16180
  41. 41. Effah E, Svendsen L, Barrett DP, Clavijo McCormick A. Exploring plant volatile-mediated interactions between native and introduced plants and insects. Sci Rep. 2022;12(1):15450. https://doi.org/10.1038/s41598-022-18479-z
  42. 42. Duc NH, Vo HT, van Doan C, Hamow KA, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. Front Plant Sci. 2022;13:1046685. https://doi.org/10.3389/fpls.2022.1046685

Downloads

Download data is not yet available.