Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Standardization of sterilization protocol and culture medium for growth regulator-free direct organogenesis in Cordyline terminalis (L.) Kunth

DOI
https://doi.org/10.14719/pst.10670
Submitted
16 July 2025
Published
14-01-2026

Abstract

The study was conducted at the Biotechnology-cum-Tissue Culture Centre, Baramunda, AICRP of Floriculture and Landscaping, Odisha University of Agriculture and Technology, Bhubaneswar, India to standardize surface sterilization protocols and assess direct organogenesis in 3 explants-nodal segments, shoot tips and leaf bits under free plant growth regulators (PGR) conditions in Cordyline terminalis (L.) Kunth. Six sterilization treatments involving ethanol, sodium hypochlorite and mercuric chloride (HgCl₂) at varying concentrations and durations were evaluated. Among all, 0.1 % HgCl₂ for 10 min (T₈) was most effective, resulting in the highest survival (75.03  ±  0.17 %), minimal fungal (10.52  ±  0.16 %) and bacterial (0 %) contamination and maximum aseptic cultures (79.48  ±  0.14 %). Nodal segments consistently outperformed other explants in survival and regeneration. Subsequent culturing of nodal segments on MS basal medium devoid of PGRs resulted in direct shoot and root formation in all treatments (T₁–T₈), with T₈ showing maximum cultures with direct organogenesis (6.67), shoots (6.00/explant), leaves (9.00/shoot), root length (7.67 cm) and number of roots (5.33). Additionally, seasonal influence was significant for explants collected during the winter season (November-December) with higher survival and lower contamination compared to those from other months. The findings establish an efficient, hormone-free regeneration protocol for C. terminalis, emphasizing the importance of optimized sterilization and seasonal timing. This approach offers a simplified and cost-effective alternative for commercial micropropagation of C. terminalis.

References

  1. 1. Beura S, Samal P, Jagadev PN. Preliminary studies of in vitro cloning of Dracaena (Dracaena sanderiana). Acta Hortic. 2007;760:241-6. https://doi.org/10.17660/ActaHortic.2007.760.31
  2. 2. Evaldsson IE, Welander NT. The effects of medium composition on in vitro propagation and in vivo growth of Cordyline terminalis cv. Atoom. J Hortic Sci. 1985;60(4):525-30. https://doi.org/10.1080/14620316.1985.11515660
  3. 3. Pierik RLM. In vitro culture of higher plants. Dordrecht: Springer; 1997. https://doi.org/10.1007/978-94-017-1854-7
  4. 4. Rout GR, Samantaray S, Das P. In vitro manipulation and propagation of medicinal plants. Biotechnol Adv. 2000;18(2):91-120. https://doi.org/10.1016/S0734-9750(99)00026-9
  5. 5. Dhyani SK, Kumar RV, Ahlawat SP. Jatropha curcas: a potential biodiesel crop and its current R & D status. Indian J Agric Sci. 2011;81(4):295-308.
  6. 6. Bharathi JK, Prakash MA. Micropropagation of vetiver grass-A review. In: Micropropagation of medicinal plants. 2024. p.283-96. https://doi.org/10.2174/9789815196146124010017
  7. 7. Rani A, Kumar M, Kumar S. In vitro propagation of Withania somnifera (L.) Dunal from shoot apex explants. J Appl Nat Sci. 2014;6(1):159. https://doi.org/10.31018/jans.v6i1.393
  8. 8. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(3). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  9. 9. Jena SS, Tripathy L, Beura S, Dash SK, Maharana K, Jena P. In vitro optimization of protocol for micropropagation in Cordyline terminalis (L.) Kunth. J Adv Biol Biotechnol. 2025;28(6):880-912. https://doi.org/10.9734/jabb/2025/v28i62449
  10. 10. Khan SA, Naz SH, Saeed BU. In vitro production of Cordyline terminalis for commercialization. Pak J Bot. 2004;36(4):757-61.
  11. 11. Dewir YH, El-Mahrouk ME, El-Banna AN. In vitro propagation and preliminary results of Agrobacterium-mediated genetic transformation of Cordyline fruticosa. S Afr J Bot. 2015;98:45-51. https://doi.org/10.1016/j.sajb.2015.01.017
  12. 12. Tematio Fouedjou R, Tsakem B, Siwe-Noundou X, Dongmo Fogang HP, Tiombou Donkia A, Kemvoufo Ponou B, et al. Ethnobotany, phytochemistry and biological activities of the genus Cordyline. Biomolecules. 2023;13(12):1783. https://doi.org/10.3390/biom13121783
  13. 13. Ye Y, Du C, Xie H, Yang D, Li G, Jiang S, et al. First report of Colletotrichum cordylinicola causing anthracnose on Cordyline fruticosa in China. Plant Dis. 2024;108(6):1887. https://doi.org/10.1094/PDIS-09-23-1915-PDN
  14. 14. Vinterhalter DV. In vitro propagation of green-foliaged Dracaena fragrans Ker. Plant Cell Tissue Organ Cult. 1989;17(1):13-19. https://doi.org/10.1007/BF00042277
  15. 15. Abdallah S. In vitro micro-propagation of cordyline and dieffenbachia plants. Hortscience J Suez Canal Univ. 2015;4(1):17-24.
  16. 16. Ray T, Saha P, Roy SC. Micropropagation of Cordyline terminalis. In: Protocols for micropropagation of selected economically important horticultural plants. Totowa: Humana Press; 2012. p. 269-77. https://doi.org/10.1007/978-1-62703-074-8_21
  17. 17. Noor El-Deen TM, Abdul-Moneem NE. Evaluating some plant growth regulators, medium strength and supporting method for optimum micropropagation of Cordyline ‘Atom’. Hortic Res J. 2025;3(2):15-30. https://doi.org/10.21608/hrj.2025.424687
  18. 18. Scowcroft WR, Larkin PJ. Somaclonal variation. Ciba Found Symp. 2007;137:21-35. https://doi.org/10.1002/9780470513651.ch3

Downloads

Download data is not yet available.