Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Microgreens as functional foods: Advances in cultivation, nutrient enrichment and postharvest management

DOI
https://doi.org/10.14719/pst.10697
Submitted
16 July 2025
Published
28-10-2025

Abstract

The increasing global demand for nutrient-dense, functional foods has fuelled interest in microgreens, which are young, edible seedlings harvested at the cotyledon or first true leaf stage. These miniature greens are valued for their vibrant appearance, concentrated flavors and superior nutritional content, including high levels of vitamins, minerals, antioxidants and secondary metabolites. This review discusses recent developments in microgreen cultivation, including advances in soilless substrates, controlled environment agriculture, seed density optimization, seed treatments and fertilization strategies. Substrates such as cocopeat, peat moss and jute fiber, along with hydroponic and aeroponic systems, have been shown to enhance yield and nutrient concentration. Manipulating light quality, particularly with red and blue LED combinations, significantly improves plant growth and phytochemical content. Seed treatments, including nutrient biofortification and disinfection, further promoted germination, nutrient uptake and safety. Although microgreens generally contain lower levels of anti-nutritional factors like phytic acid compared to their mature counterparts, these compounds can still impact mineral bioavailability. However, research demonstrates that targeted biofortification can effectively reduce such limitations. This review provides a comprehensive overview of the production techniques, nutritional potential and safety considerations of microgreens, highlighting their relevance as a sustainable and health-promoting food source.

References

  1. 1. Ebert AW. Sprouts and microgreens—Novel food sources for healthy diets. Plants. 2022;11(4):571. https://doi.org/10.3390/plants11040571
  2. 2. Verlinden S. Microgreens: Definitions, product types and production practices. Hortic Rev. 2020;47:85-124. https://doi.org/10.1002/9781119625407.ch3
  3. 3. Cowden RJ, Markussen B, Ghaley BB, Henriksen CB. The effects of light spectrum and intensity, seeding density and fertilization on biomass, morphology and resource use efficiency in three species of Brassicaceae microgreens. Plants. 2024;13(1):124. https://doi.org/10.3390/plants13010124
  4. 4. Di Gioia F, Hong JC, Pisani C, Petropoulos SA, Bai J, Rosskopf EN. Yield performance, mineral profile and nitrate content in a selection of seventeen microgreen species. Front Plant Sci. 2023;14:1220691. https://doi.org/10.3389/fpls.2023.1220691
  5. 5. Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens-A comprehensive review of bioactive molecules and health benefits. Molecules. 2023;28(2):867. https://doi.org/10.3390/molecules28020867
  6. 6. Di Gioia F, De Bellis P, Mininni C, Santamaria P, Serio F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J Sci Food Agric. 2017;97(4):1212-9. https://doi.org/10.1002/jsfa.7852
  7. 7. Tan L, Nuffer H, Feng J, Kwan SH, Chen H, Tong X, et al. Antioxidant properties and sensory evaluation of microgreens from commercial and local farms. Food Sci Hum Wellness. 2020;9(1):45-51. https://doi.org/10.1016/j.fshw.2019.12.002
  8. 8. Lone JK, Pandey R. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon. 2024;10(4):e25870. https://doi.org/10.1016/j.heliyon.2024.e25870
  9. 9. Zhang Y, Xiao Z, Ager E, Kong L, Tan L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J Future Foods. 2021;1(1):58-66. https://doi.org/10.1016/j.jfutfo.2021.07.001
  10. 10. Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet. 2023;14:1053810. https://doi.org/10.3389/fgene.2023.1053810
  11. 11. Partap M, Sharma D, Thakur M, Verma V, Bhargava B. Microgreen: A tiny plant with superfood potential. J Funct Foods. 2023;107:105697. https://doi.org/10.1016/j.jff.2023.105697
  12. 12. Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, Giordano M, et al. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants. 2020;9(3):252. https://doi.org/10.3390/antiox9030252
  13. 13. Nur TP, Gofar N. Growth and yield of indoor-cultivated mustard microgreens against the duration of LED irradiation and variations in planting media. J Lahan Suboptimal. 2023;12(2):172-83. https://doi.org/10.36706/jlso.12.2.2023.636
  14. 14. Putra BTW, Syahputra WNH, Dewanti P. Effect of different photoperiod regimes in combination with natural and artificial light on nutrient uptake in bok choy (Brassica rapa L.) using an internet of things-based hydroponics system. J Agric Eng. 2024;55(3).
  15. 15. Mohan A, Singh A, Kumar K, Kumar A, Kumar S, Jassal A, et al. Automation of hydroponic microgreen farming using IoT. Proc KILBY 100 7th Int Conf Comput Sci. 2023. https://doi.org/10.2139/ssrn.4483782
  16. 16. Moraru PI, Rusu T, Mintas OS. Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods. 2022;11(9):1327. https://doi.org/10.3390/foods11091327
  17. 17. Fabek Uher S, Radman S, Opačić N, Dujmović M, Benko B, Lagundžija D, et al. Alfalfa, cabbage, beet and fennel microgreens in floating hydroponics-Perspective nutritious food?. Plants. 2023;12(11):2098. https://doi.org/10.3390/plants12112098
  18. 18. Singh B. New systems of vegetable production: Protected cultivation, hydroponics, aeroponics, vertical, organic, microgreens. In: Vegetables Nutr Entrep Springer. 2023. p. 31-56. https://doi.org/10.1007/978-981-19-9016-8_2
  19. 19. Teng Z, Luo Y, Pearlstein DJ, Wheeler RM, Johnson CM, Wang Q, et al. Microgreens for home, commercial and space farming: a comprehensive update of the most recent developments. Annu Rev Food Sci Technol. 2023;14(1):539-62. https://doi.org/10.1146/annurev-food-060721-024636
  20. 20. De Francesco S, Amitrano C, Vitale E, Costanzo G, Pugliese M, Arrichiello C, et al. Growth, anatomical and biochemical responses of the space farming candidate Brassica rapa L. microgreens to low-LET ionizing radiation. Horticulturae. 2023;9(4):452. https://doi.org/10.3390/horticulturae9040452
  21. 21. Amitrano C, Paglialunga G, Battistelli A, De Micco V, Del Bianco M, Liuzzi G, et al. Defining growth requirements of microgreens in space cultivation via biomass production, morpho-anatomical and nutritional traits analysis. Front Plant Sci. 2023;14:1190945. https://doi.org/10.3389/fpls.2023.1190945
  22. 22. Kyriacou MC, De Pascale S, Kyratzis A, Rouphael Y. Microgreens as a component of space life support systems: A cornucopia of functional food. Front Plant Sci. 2017;8:294717. https://doi.org/10.3389/fpls.2017.01587
  23. 23. Wheeler RM, Stutte GW, Mackowiak CL, Yorio NC, Sager JC, Knott WM. Gas exchange rates of potato stands for bioregenerative life support. Adv Space Res. 2008;41(5):798-806. https://doi.org/10.1016/j.asr.2007.07.027
  24. 24. Ciriello M, Campana E, Kyriacou MC, El-Nakhel C, Graziani G, Cardarelli M, et al. Plant-derived biostimulant as priming agents enhanced antioxidant and nutritive properties in Brassicaceous microgreens. J Sci Food Agric. 2024;104(10):5921-9. https://doi.org/10.1002/jsfa.13416
  25. 25. Signore A, Somma A, Leoni B, Santamaria P. Optimising sowing density for microgreens production in rapini, kale and cress. Horticulturae. 2024;10(3):274. https://doi.org/10.3390/horticulturae10030274
  26. 26. Cowden RJ, Ghaley BB, Henriksen CB. Analysis of light recipe, seeding density and fertilization effects on secondary metabolite accumulation and growth-defense responses in Brassicaceae microgreens. Food Biosci. 2024;59:104071. https://doi.org/10.1016/j.fbio.2024.104071
  27. 27. Flores M, Hernández-Adasme C, Guevara MJ, Escalona VH. Effect of different light intensities on agronomic characteristics and antioxidant compounds of Brassicaceae microgreens in a vertical farm system. Front Sustain Food Syst. 2024;8:1349423. https://doi.org/10.3389/fsufs.2024.1349423
  28. 28. Qiao J, Li Z, Lv Z, Liu S, Chen S, Feng Y. Effects of different combinations of red and blue light on the edible organ morphology and quality of buckwheat (Fagopyrum esculentum Moench) microgreens. Agronomy. 2024;14(4):751. https://doi.org/10.3390/agronomy14040751
  29. 29. Tavan M, Wee B, Fuentes S, Pang A, Brodie G, Viejo CG, et al. Biofortification of kale microgreens with selenate-selenium using two delivery methods: Selenium-rich soilless medium and foliar application. Sci Hortic. 2024;323:112522. https://doi.org/10.1016/j.scienta.2023.112522
  30. 30. Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Simultaneous biofortification of vitamin C and mineral nutrients in arugula microgreens. Food Chem. 2024;440:138180. https://doi.org/10.1016/j.foodchem.2023.138180
  31. 31. Tilahun S, Baek MW, An K-S, Choi HR, Lee JH, Tae SH, et al. Preharvest methyl jasmonate treatment affects the mineral profile, metabolites and antioxidant capacity of radish microgreens produced without substrate. Foods. 2024;13(5):789. https://doi.org/10.3390/foods13050789
  32. 32. Patil M, Sharma S, Sridhar K, Anurag RK, Grover K, Dharni K, et al. Effect of postharvest treatments and storage temperature on the physiological, nutritional and shelf-life of broccoli (Brassica oleracea) microgreens. Sci Hortic. 2024;327:112805. https://doi.org/10.1016/j.scienta.2023.112805
  33. 33. Haslund-Gourley B, Para C, Rachuri S, Enders S, Marshall R, Mishra V, et al. Microgreens grow kit: a novel pilot study to improve nutrition awareness. Transform. Med. 2022;1(1):2-11. https://doi.org/10.54299/tmed/ngfk2366
  34. 34. Herrmann TM, Loring PA, Fleming T, Thompson S, Lamalice A, Macé M, et al. Community-led initiatives as innovative responses: shaping the future of food security and food sovereignty in Canada. In: Food Secur High North Routledge. 2020. p. 249-80. https://doi.org/10.4324/9781003057758-18
  35. 35. Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B. Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J Sci Food Agric. 2019;99(12):5601-5. https://doi.org/10.1002/jsfa.9826
  36. 36. Mlinarić S, Piškor A, Melnjak A, Mikuška A, Šrajer Gajdošik M, Begović L. Antioxidant capacity and shelf life of radish microgreens affected by growth light and cultivars. Horticulturae. 2023;9(1):76. https://doi.org/10.3390/horticulturae9010076
  37. 37. Turner ER, Luo Y, Buchanan RL. Microgreen nutrition, food safety and shelf life: A review. J Food Sci. 2020;85(4):870-82. https://doi.org/10.1111/1750-3841.15049
  38. 38. Misra G. Food safety risk in an indoor microgreen cultivation system. [MSc Thesis]. Univ Arkansas. 2020.
  39. 39. Riggio GM, Wang Q, Kniel KE, Gibson KE. Microgreens—A review of food safety considerations along the farm to fork continuum. Int J Food Microbiol. 2019;290:76-85. https://doi.org/10.1016/j.ijfoodmicro.2018.09.027
  40. 40. Misra G, Gibson KE. Characterization of microgreen growing operations and associated food safety practices. Food Prot Trends. 2021;41(1):56-63. https://doi.org/10.4315/1541-9576-41.1.56
  41. 41. D'Imperio M, Montesano FF, Montemurro N, Parente A. Posidonia natural residues as growing substrate component: an ecofriendly method to improve nutritional profile of brassica microgreens. Front Plant Sci. 2021;12:580596. https://doi.org/10.3389/fpls.2021.580596
  42. 42. Min Allah S, Dimita R, Negro C, Luvisi A, Gadaleta A, Mininni C, et al. Quality evaluation of mustard microgreens grown on peat and jute substrate. Horticulturae. 2023;9(5):598. https://doi.org/10.3390/horticulturae9050598
  43. 43. El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Gaspari A, Ritieni A, et al. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. microgreens species grown in peat-based media. Agronomy. 2021;11(2):346. https://doi.org/10.3390/agronomy11020346
  44. 44. Bantis F, Koukounaras A. Microgreen vegetables' production can be optimized by combining the substrate and nutrient solution in a PFAL. Sci Hortic. 2024;333:113277. https://doi.org/10.1016/j.scienta.2024.113277
  45. 45. Paglialunga G, El Nakhel C, Proietti S, Moscatello S, Battistelli A, Formisano L, et al. Substrate and fertigation management modulate microgreens production, quality and resource efficiency. Front Sustain Food Syst. 2023;7:1222914. https://doi.org/10.3389/fsufs.2023.1222914
  46. 46. Khatoon S, Singh M. Impact of various substrates on the physicochemical properties of radish microgreens. Ann Phytomed. 2022;11:591-6. https://doi.org/10.54085/ap.2022.11.2.72
  47. 47. Gunjal M, Singh J, Kaur J, Kaur S, Nanda V, Mehta CM, et al. Comparative analysis of morphological, nutritional and bioactive properties of selected microgreens in alternative growing medium. S Afr J Bot. 2024;165:188-201. https://doi.org/10.1016/j.sajb.2023.12.038
  48. 48. Sulistiya S. Response to the growth and results of microgreens broccoli planted hydroponically with various planting media and addition of coconut water sources of nutrition and hormone. J Pertan Agros. 2021;23(1):217-29.
  49. 49. Eswaranpillai U, Murugesan P, Karuppiah P. Assess the impact of cultivation substrates for growing sprouts and microgreens of selected four legumes and two grains and evaluation of its nutritional properties. Plant Science Today. 2023;10(2):160-9. https://doi.org/10.14719/pst.2058
  50. 50. Septirosya T, Septiana D, Oktari R, Solfan B, Aryanti E, editors. Sulforaphane content enhancement of red cabbage microgreens by using different planting media and nutrition solution. IOP Conf Ser: Earth Environ Sci. 2024;1302:012016. https://doi.org/10.1088/1755-1315/1302/1/012016
  51. 51. Maru RN, Wesonga J, Okazawa H, Kavoo A, Neondo JO, Mazibuko DM, et al. Evaluation of growth, yield and bioactive compounds of Ethiopian kale (Brassica carinata A. Braun) microgreens under different LED light spectra and substrates. Horticulturae. 2024;10(5):436. https://doi.org/10.3390/horticulturae10050436
  52. 52. Sheku N. Potassium and sodium extraction in cocopeat for potato (Solanum tuberosum L.) minituber production under varied calcium nitrate soaking durations and cocopeat-pumice media. [thesis]. Egerton University. 2022.
  53. 53. Bulgari R, Negri M, Santoro P, Ferrante A. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Horticulturae. 2021;7(5):96. https://doi.org/10.3390/horticulturae7050096
  54. 54. Li T, Lalk GT, Arthur JD, Johnson MH, Bi G. Shoot production and mineral nutrients of five microgreens as affected by hydroponic substrate type and post-emergent fertilization. Horticulturae. 2021;7(6):129. https://doi.org/10.3390/horticulturae7060129
  55. 55. Ciuta F, Arghir L, Tudor C, Lagunovschi-Luchian V. Research on microgreens farming in vertical hydroponic system. Sci Pap Ser B Hortic. 2020;64(1):134-139.
  56. 56. Nissen L, Casciano F, Gianotti A. Plant volatiles of lettuce and chicory cultivated in aquaponics are associated to their microbial community. Microorganisms. 2021;9(3):580. https://doi.org/10.3390/microorganisms9030580
  57. 57. Sathyanarayana SR, Warke VG, Mahajan GB, Annapure US. Comparative studies of microbial and heavy metal safety assessment of the herbs cultivated in hydroponically and regular soil system. J Food Saf. 2021;41(6):e12936. https://doi.org/10.1111/jfs.12936
  58. 58. Sharat K. Aeroponic farming technology. ResearchGate. 2022. https://www.researchgate.net/publication/368335200_Aeroponic_Farming_Technology
  59. 59. Richter DS. A modulated aeroponics system: a prototype of an automated solution for home growing. 2023.
  60. 60. Ashenafi E. Optimization of controlled environment agriculture (CEA) for growing crops [thesis]. Rensselaer Polytechnic Institute. 2022.
  61. 61. Li Y, Zhou B, Teng Z, Zhang M, Yu L, Luo Y, et al. Improved metabolomic approach for evaluation of phytochemicals in mustard, kale and broccoli microgreens under different controlled environment agriculture conditions. J Agric Food Res. 2023;14:100719. https://doi.org/10.1016/j.jafr.2023.100719
  62. 62. Brazaitytė A, Miliauskienė J, Vaštakaitė-Kairienė V, Sutulienė R, Laužikė K, Duchovskis P, et al. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants. 2021;10(4):801. https://doi.org/10.3390/plants10040801
  63. 63. Du M, Xiao Z, Luo Y. Advances and emerging trends in cultivation substrates for growing sprouts and microgreens toward safe and sustainable agriculture. Curr Opin. Food Sci. 2022;46:100863. https://doi.org/10.1016/j.cofs.2022.100863
  64. 64. Zhang X, Bian Z, Yuan X, Chen X, Lu C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020;99:203-216. https://doi.org/10.1016/j.tifs.2020.02.031
  65. 65. Luo L, Zhang G, Liang W, Wu D, Sun Q, Hao Y. Effects of LED light quality on broccoli microgreens plant growth and nutrient accumulation. J Plant Growth Regul. 2024:1-9. https://doi.org/10.1007/s00344-024-11326-7
  66. 66. Vrkić R, Šic Žlabur J, Dujmović M, Benko B. Can LED lighting be a sustainable solution for producing nutritionally valuable microgreens?. Horticulturae. 2024;10(3):249. https://doi.org/10.3390/horticulturae10030249
  67. 67. Ying Q, Jones-Baumgardt C, Zheng Y, Bozzo G. The proportion of blue light from light-emitting diodes alters microgreen phytochemical profiles in a species-specific manner. HortScience. 2021;56(1):13-20. https://doi.org/10.21273/HORTSCI15371-20
  68. 68. Orlando M, Trivellini A, Incrocci L, Ferrante A, Mensuali A. The inclusion of green light in a red and blue light background impacts the growth and functional quality of vegetable and flower microgreen species. Horticulturae. 2022;8(3):217. https://doi.org/10.3390/horticulturae8030217
  69. 69. Dubey S, Harbourne N, Harty M, Hurley D, Elliott-Kingston C. Microgreens production: exploiting environmental and cultural factors for enhanced agronomical benefits. Plants. 2024;13(18):2631. https://doi.org/10.3390/plants13182631
  70. 70. Ntsoane MLL, Manhivi VE, Shoko T, Seke F, Maboko MM, Sivakumar D. The phytonutrient content and yield of Brassica microgreens grown in soilless media with different seed densities. Horticulturae. 2023;9(11):1218. https://doi.org/10.3390/horticulturae9111218
  71. 71. Nolan DA. Effects of seed density and other factors on the yield of microgreens grown hydroponically on burlap. 2019.
  72. 72. Priti, Sangwan S, Kukreja B, Mishra GP, Dikshit HK, Singh A, et al. Yield optimization, microbial load analysis and sensory evaluation of mung bean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris) and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS One. 2022;17(5):e0268085. https://doi.org/10.1371/journal.pone.0268085
  73. 73. de Freitas IS, da Costa Mello S, Nemali K. Supplemental light quality affects optimal seeding density of microgreens. Urban Agric Reg Food Syst. 2024;9(1):e20064. https://doi.org/10.1002/uar2.20064
  74. 74. Thuong VT, Minh HG. Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Res Crops. 2020;21(3):579-86. https://doi.org/10.31830/2348-7542.2020.091
  75. 75. Murphy C, Pill W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J Hortic Sci Biotechnol. 2010;85(3):171-6. https://doi.org/10.1080/14620316.2010.11512650
  76. 76. McGehee CS, Raudales RE, Elmer WH, McAvoy RJ. Efficacy of biofungicides against root rot and damping-off of microgreens caused by Pythium spp. Crop Prot. 2019;121:96-102. https://doi.org/10.1016/j.cropro.2018.12.007
  77. 77. Li T, Lalk GT, Bi G. Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae. 2021;7(2):14. https://doi.org/10.3390/horticulturae7020014
  78. 78. Manohar Kandileri A, Shukla G, Louis LT, Kizha AR, Husen A, Chakravarty S. Influence of hydro, mechanical and chemical treatments to seed for germination and seedling growth of Saraca asoca (Roxb. De Wilde). Seeds. 2024;3(1):88-102. https://doi.org/10.3390/seeds3010007
  79. 79. Yordanova M, Miroslavova B. Pre-treatment of slow-germinating Apiaceae seeds for microgreens. Sci Pap Ser B Hortic. 2024;68(1).
  80. 80. Frąszczak B, Kula-Maximenko M, Li C. The suitability of algae solution in pea microgreens cultivation under different light intensities. Agriculture. 2024;14(10):1665. https://doi.org/10.3390/agriculture14101665
  81. 81. Islam MZ, Park B-J, Lee Y-T. Effects of seed pre-soaking on bioactive phytochemical levels of wheat and barley microgreens grown under hydroponics versus organic soil conditions. Ital J Agron. 2023;18(1):2183. https://doi.org/10.4081/ija.2023.2183
  82. 82. Aly T, Elgabry Y, Elbehairy U. Impact of seed pre-soaking in saline and salicylic acid on germination and nutritional quality of radish microgreens. Arab Univ J Agric Sci. 2024;32(2):273-81.
  83. 83. De La Torre-Roche R, Cantu J, Tamez C, Zuverza-Mena N, Hamdi H, et al. Seed biofortification by engineered nanomaterials: a pathway to alleviate malnutrition? J Agric Food Chem. 2020;68(44):12189-202. https://doi.org/10.1021/acs.jafc.0c04881
  84. 84. Poudel P, Di Gioia F, Lambert JD, Connolly EL. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. Front Plant Sci. 2023;14:1177844. https://doi.org/10.3389/fpls.2023.1177844
  85. 85. Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci. USA. 1996;93(11):5624-8. https://doi.org/10.1073/pnas.93.11.5624
  86. 86. Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C, editors. Sustainable Agriculture. Dordrecht: Springer. 2009. p. 873-84. https://doi.org/10.1007/978-90-481-2666-8_53
  87. 87. Kaur H, Garg N. Zinc toxicity in plants: a review. Planta. 2021;253(6):129. https://doi.org/10.1007/s00425-021-03642-z
  88. 88. Mezeyová I, Hegedűsová A, Golian M Andrejiová A, Šlosár M, Mezey J. Influence of microgreens biofortification with selenium on their quantitative and qualitative parameters. Agronomy. 2022;12(5):1096. https://doi.org/10.3390/agronomy12051096
  89. 89. Hummerick M, Curry A, Gooden J, Spern C, Spencer L, Romeyn M, et al. The microbiology of microgreens grown in controlled environment chambers under ISS conditions. 51st Int Conf Environ Syst. 2022.
  90. 90. Ocho Bernal TG, Lyttle N, Jung Y. Microbiological quality of microgreen seeds purchased from online vendors and evaluating seed decontamination techniques available online. Front Sustain Food Syst. 2023;7:1264472. https://doi.org/10.3389/fsufs.2023.1264472
  91. 91. Dong M, Park HK, Wang Y, Feng H. Control Escherichia coli O157:H7 growth on sprouting Brassicaceae seeds with high acoustic power density (APD) ultrasound plus mild heat and calcium-oxide antimicrobial spray. Food Control. 2022;132:108482. https://doi.org/10.1016/j.foodcont.2021.108482
  92. 92. Bhabani MG, Shams R, Dash KK. Microgreens and novel non-thermal seed germination techniques for sustainable food systems: a review. Food Sci Biotechnol. 2024;33(7):1541-57. https://doi.org/10.1007/s10068-024-01529-9
  93. 93. Rizvi A, Sharma M, Saxena S. Microgreens: a next generation nutraceutical for multiple disease management and health promotion. Genet Resour Crop Evol. 2023;70(2):311-32. https://doi.org/10.1007/s10722-022-01506-3
  94. 94. Coelho A, Cavalari AA, Haddad P, do Nascimento AN. Nanofertilizers for enhancing food production: a case study on microgreens enrichment using superparamagnetic iron oxide nanoparticles (SPIONs). Food Chem. 2025;463:141364.
  95. 95. Goble CC. Effects of calcium fertilization on growth, yield and nutrient content of hydroponically grown radish microgreens. 2018.
  96. 96. Barbi S, Barbieri F, Bertacchini A, Barbieri L, Montorsi M. Effects of different LED light recipes and NPK fertilizers on basil cultivation for automated and integrated horticulture methods. Appl Sci. 2021;11(6):2497. https://doi.org/10.3390/app11062497
  97. 97. Sharma S, Shree B, Sharma D, Kumar S, Kumar V, Sharma R, et al. Vegetable microgreens: the gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res Int. 2022;155:111038. https://doi.org/10.1016/j.foodres.2022.111038
  98. 98. Wani NR, Farooq A, Thakur M. Microgreens: an emerging and sustainable innovative approach for functional properties. In: Husen A, editor. Bioactive components: A sustainable system for good health and well-being. Singapore: Springer. 2022. p. 489-501. https://doi.org/10.1007/978-981-19-2366-1_28
  99. 99. Dhaka AS, Dikshit HK, Mishra GP, Tontang MT, Meena NL, Kumar RR, et al. Evaluation of growth conditions, antioxidant potential and sensory attributes of six diverse microgreens species. Agriculture. 2023;13(3):676. https://doi.org/10.3390/agriculture13030676
  100. 100. Treadwell D, Hochmuth R, Landrum L, Laughlin W. Microgreens: a new specialty crop: HS1164, rev. 9/2020. Edis. 2020;2020(5). https://doi.org/10.32473/edis-hs1164-2020
  101. 101. Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas V, Singh D, et al. Influence of storage conditions, packaging, post-harvest technology, nanotechnology and molecular approaches on shelf life of microgreens. J Agric Food Res. 2023;14:100835. https://doi.org/10.1016/j.jafr.2023.100835
  102. 102. Kou L, Yang T, Liu X, Luo Y. Effects of pre- and postharvest calcium treatments on shelf life and postharvest quality of broccoli microgreens. HortScience. 2015;50(12):1801-8. https://doi.org/10.21273/HORTSCI.50.12.1801
  103. 103. Dalal N, Siddiqui S, Phogat N. Post-harvest quality of sunflower microgreens as influenced by organic acids and ethanol treatment. J Food Process Preserv. 2020;44(9):e14678. https://doi.org/10.1111/jfpp.14678
  104. 104. Hendriks A. Producing a more valuable crop: improving nutritional value, shelf life, taste and appearance in microgreens using pre-harvest light treatments. [MSc Thesis]. 2021.
  105. 105. Lu Y, Dong W, Yang T, Luo Y, Chen P. Preharvest UVB application increases glucosinolate contents and enhances postharvest quality of broccoli microgreens. Molecules. 2021;26(11):3247. https://doi.org/10.3390/molecules26113247
  106. 106. Rozali S, Sivaguru N. Utilization of LED illumination coupled with UV-C irradiation to improve the post-harvest quality of radish microgreens. Food Res. 2024;8(3):33-40. https://doi.org/10.26656/fr.2017.8(S3).4
  107. 107. Song Y, Qiu K, Gao J, Kuai B. Molecular and physiological analyses of the effects of red and blue LED light irradiation on postharvest senescence of pak choi. Postharvest Biol Technol. 2020;164:111155. https://doi.org/10.1016/j.postharvbio.2020.111155
  108. 108. Işık S, Aytemiş Z, Çetin B, Topalcengiz Z. Possible explanation for limited reduction of pathogens on radish microgreens after spray application of chlorinated water during growth with disperse contamination spread of abiotic surrogate on leaves. J Food Saf. 2022;42(4):e12984. https://doi.org/10.1111/jfs.12984
  109. 109. Ghoora MD, Srividya N. Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L. and Hibiscus sabdariffa L. microgreens. Foods. 2020;9(5):653. https://doi.org/10.3390/foods9050653
  110. 110. Dayarathna NN, Gama-Arachchige NS, Damunupola JW, Xiao Z, Gamage A, Merah O, et al. Effect of storage temperature on storage life and sensory attributes of packaged mustard microgreens. Life. 2023;13(2):393. https://doi.org/10.3390/life13020393
  111. 111. Chandra D, Kim JG, Kim YP. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic Environ. Biotechnol. 2012;53(1):32-40. https://doi.org/10.1007/s13580-012-0075-6
  112. 112. Adler C, Corinth HG, Reichmuth C. Modified atmospheres. In Alternatives to Pesticides in Stored-product IPM. Boston, MA: Springer US. 2000: pp. 105-146.
  113. 113. Yan H, Li W, Chen H, Liao Q, Xia M, Wu D, et al. Effects of storage temperature, packaging material and wash treatment on quality and shelf life of Tartary buckwheat microgreens. Foods. 2022;11(22):3630. https://doi.org/10.3390/foods11223630
  114. 114. Martinez J. Controlled environment agriculture: A systematic review. Food Saf. 2024;10.
  115. 115. Michelon N, Pistillo A, Paucek I, Pennisi G, Bazzocchi G, Gianquinto G, et al. From microgarden technologies to vertical farms: innovative growing solutions for multifunctional urban agriculture. Acta Hortic. 2019;1298:1-8.
  116. 116. Puente L, Char C, Patel D, Thilakarathna MS, Roopesh M. Research trends and development patterns in microgreens publications: A bibliometric study from 2004 to 2023. Sustainability. 2024;16(15):6645. https://doi.org/10.3390/su16156645
  117. 117. Amici AS, Appicciutoli D, Bentivoglio D, Staffolani G, Chiaraluce G, Mogetta M, et al. From seed to profit: a comparative economic study of two Italian vertical farms. Front Sustain Food Syst. 2025;9:1584778. https://doi.org/10.3389/fsufs.2025.1584778
  118. 118. da Silva BCNR, da Silva FJ, Oliveira KRdS, Filho RGA, Severi W, Medeiros MV, et al. Production of tambaqui juveniles (Colossoma macropomum) and arugula microgreens (Eruca sativa) in small-scale aquaponic systems: technical and economic viability. Aquac Int. 2025;33(1):41. https://doi.org/10.1007/s10499-024-01759-y
  119. 119. Francis BAA. Urban rooftop farming in Bangalore: A condensed analysis of sustainability and economic viability [Unpublished/grey literature]. 2025.
  120. 120. Xiao Z, Codling EE, Luo Y, Nou X, Lester GE, Wang Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J Food Compos Anal. 2016;49:87-93. https://doi.org/10.1016/j.jfca.2016.04.006
  121. 121. Balik S, Elgudayem F, Dasgan HY, Kafkas NE, Gruda NS. Nutritional quality profiles of six microgreens. Sci Rep. 2025;15(1):6213. https://doi.org/10.1038/s41598-025-85860-z
  122. 122. Martínez-Ispizua E, Calatayud Á, Marsal JI, Cannata C, Basile F, Abdelkhalik A, et al. The nutritional quality potential of microgreens, baby leaves and adult lettuce: an underexploited nutraceutical source. Foods. 2022;11(3):423. https://doi.org/10.3390/foods11030423
  123. 123. Johnson SA, Prenni JE, Heuberger AL, Isweiri H, Chaparro JM, Newman SE, et al. Comprehensive evaluation of metabolites and minerals in 6 microgreen species and the influence of maturity. Curr Dev Nutr. 2021;5(2):180. https://doi.org/10.1093/cdn/nzaa180
  124. 124. Pinto E, Almeida AA, Aguiar AA, Ferreira IM. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J Food Compos Anal. 2015;37:38-43. https://doi.org/10.1016/j.jfca.2014.06.018
  125. 125. Yadav LP, Koley TK, Tripathi A, Singh S. Antioxidant potentiality and mineral content of summer season leafy greens: Comparison at mature and microgreen stages using chemometric. Agric Res. 2019;8(2):165-75. https://doi.org/10.1007/s40003-018-0378-7
  126. 126. Kapusta-Duch J, Smoleń S, Jędrszczyk E, Leszczyńska T, Borczak B, Kusznierewicz B. Evaluation of selected heavy metal contaminants as well as nitrates and nitrites in the microgreens of nigella (Nigella sativa L.), safflower (Carthamus tinctorius L.) and camelina (Camelina sativa L.) at different stages of vegetation. Appl Sci. 2024;14(10):4298. https://doi.org/10.3390/app14104298
  127. 127. Acharya J, Gautam S, Neupane P, Niroula A. Pigments, ascorbic acid and total polyphenols content and antioxidant capacities of beet (Beta vulgaris) microgreens during growth. Int J Food Prop. 2021;24(1):1175-86. https://doi.org/10.1080/10942912.2021.1955924
  128. 128. Xiao Z, Lester GE, Luo Y, Wang Q. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J Agric Food Chem. 2012;60(31):7644-51. https://doi.org/10.1021/jf300459b
  129. 129. Petropoulos SA, El-Nakhel C, Graziani G, Kyriacou MC, Rouphael Y. The effects of nutrient solution feeding regime on yield, mineral profile and phytochemical composition of spinach microgreens. Horticulturae. 2021;7(7):162. https://doi.org/10.3390/horticulturae7070162
  130. 130. Brazaitytė A, Jankauskienė J, Novičkovas A. The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Dev. 2013;6:54-8. https://doi.org/10.15544/RD.2013.2.005
  131. 131. Gmižić D, Pinterić M, Lazarus M, Šola I. High growing temperature changes nutritional value of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) seedlings. Foods. 2023;12(3):582. https://doi.org/10.3390/foods12030582
  132. 132. Agostini-Costa TS, Vieira RF, Bizzo HR, Silveira D, Gimenes MA. Secondary metabolites. Chromatogr Appl. 2012;1:131-64. https://doi.org/10.5772/35705
  133. 133. Zhong Y, Xie Y, Zhang D, Li G, Yu J. Integrated metabolomic and transcriptomic analysis of metabolic diversity and biosynthesis of glucosinolates and flavonoids in various cultivars of radish microgreens. Food Biosci. 2024;59:104055. https://doi.org/10.1016/j.fbio.2024.104055
  134. 134. Kajszczak D, Sosnowska D, Bonikowski R, Szymczak K, Frąszczak B, Pielech-Przybylska K, et al. Comparative nutrient study of Raphanus sativus L. sprouts, microgreens and roots. Agronomy. 2025;15(5):1216. https://doi.org/10.3390/agronomy15051216
  135. 135. Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules. 2020;25(20):4648. https://doi.org/10.3390/molecules25204648
  136. 136. Tomas M, Zhang L, Zengin G, Rocchetti G, Capanoglu E, Lucini L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res Int. 2021;140:110039. https://doi.org/10.1016/j.foodres.2020.110039
  137. 137. Butkutė B, Taujenis L, Norkevičienė E. Small-seeded legumes as a novel food source. Variation of nutritional, mineral and phytochemical profiles in the chain: raw seeds-sprouted seeds-microgreens. Molecules. 2018;24(1):133. https://doi.org/10.3390/molecules24010133
  138. 138. Zou L, Tan WK, Du Y, Lee HW, Liang X, Lei J, et al. Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: microgreen, seedling and adult plant. Food Chem. 2021;357:129535. https://doi.org/10.1016/j.foodchem.2021.129535
  139. 139. Boonrat P, Patel M, Pengphorm P, Detarun P, Daengngam C. Hyperspectral imaging for the dynamic mapping of total phenolic and flavonoid contents in microgreens. Agri Engineering. 2025;7(4):107. https://doi.org/10.3390/agriengineering7040107
  140. 140. Thakur N, Kumar P. Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. Agric Int. 2017;4(1):56-60. https://doi.org/10.5958/2454-8634.2017.00013.4
  141. 141. Thakur A, Sharma V, Thakur A. An overview of anti-nutritional factors in food. Int J Chem Stud. 2019;7(1):2472-9.
  142. 142. Longvah T, An-antan- I, Bhaskarachary K, Venkaiah K, Longvah T. Indian Food Composition Tables. Hyderabad: Natl Inst Nutr Indian Counc Med Res. 2017.
  143. 143. Kalpanadevi V, Mohan V. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT. Food Sci Technol. 2013;51(2):455-61. https://doi.org/10.1016/j.lwt.2012.09.030
  144. 144. Sangronis E, Machado C. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT-Food Sci Technol. 2007;40(1):116-20. https://doi.org/10.1016/j.lwt.2005.08.003
  145. 145. Cowieson A, Acamovic T, Bedford M. Phytic acid and phytase: implications for protein utilization by poultry. Poult Sci. 2006;85(5):878-85. https://doi.org/10.1093/ps/85.5.878
  146. 146. Gunjal M, Singh J, Kaur S, Nanda V, Ullah R, Iqbal Zet al. Assessment of bioactive compounds, antioxidant properties and morphological parameters in selected microgreens cultivated in soilless media. Sci Rep. 2024;14(1):23605. https://doi.org/10.1038/s41598-024-73973-w
  147. 147. Khoja KK, Buckley A, Aslam MF, Sharp PA, Latunde-Dada GO. In vitro bioaccessibility and bioavailability of iron from mature and microgreen fenugreek, rocket and broccoli. Nutrients. 2020;12(4):1057. https://doi.org/10.3390/nu12041057

Downloads

Download data is not yet available.