Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 13 No. 1 (2026)

Pharmacological efficacy and therapeutic properties of selected Ayurvedic medicinal plants: A scoping review

DOI
https://doi.org/10.14719/pst.10721
Submitted
18 July 2025
Published
31-01-2026 — Updated on 05-02-2026
Versions

Abstract

Ayurvedic medicinal plants have long been used for health promotion and disease management. This article explores the pharmacological efficacy and therapeutic properties of six widely used Ayurvedic herbs: Withania somnifera L. (Ashwagandha), Mucuna pruriens (Kapikachu), Sida rhombifolia (Atibala), Cyanthillium cinereum (Sahadevi), Tinospora cordifolia (Guduchi) and Glycyrrhiza glabra (Yashtimadhu). Each of these plants possesses unique bioactive compounds that contribute to their pharmacological effects. Withania somnifera (Ashwagandha) is well-known for its adaptogenic, neuroprotective and anti-inflammatory properties. Mucuna pruriens (Kapikachu) exhibits neuroprotective, aphrodisiac and anti-Parkinsonian activities due to its high L-DOPA content. Sida rhombifolia (Atibala) demonstrates anti-inflammatory, antimicrobial and hepatoprotective effects. Cyanthillium cinereum (Sahadevi) is valued for its anti-cancer, anti-inflammatory and detoxifying properties. Tinospora cordifolia (Guduchi) is a potent immunomodulator with anti-diabetic and hepatoprotective actions, while Glycyrrhiza glabra (Yashtimadhu) is widely used for its gastroprotective, anti-ulcer and anti-inflammatory effects. This review highlights their pharmacological mechanisms, therapeutic applications and potential integration into modern medicine. Further clinical research and pharmacological investigations are essential to establish their efficacy and safety in contemporary healthcare systems.

References

  1. 1. Sharma P. Phytochemicals and chemoprotective potential of medicinal plants: an overview. Front Pharmacol. 2023;14:1049334.
  2. 2. Vedi M. Antioxidant and cytoprotective roles of Ayurvedic herbs. Pharmaceutics. 2023;15(4):1057.
  3. 3. Mishra LC. Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): a review. Altern Med Rev. 2000;5(4):334–46.
  4. 4. Singh N. Tinospora cordifolia: a review of its immunomodulatory properties. Front Pharmacol. 2021;12:665882.
  5. 5. Pastorino G. Liquorice (Glycyrrhiza glabra L.) as a source of bioactive compounds. Plants. 2023;12(2):229.
  6. 6. Dey L. Herbal adaptogens: ancient remedies meet modern evidence. J Ethnopharmacol. 2022;289:115073.
  7. 7. Khullar M. Pharmacological insights into Withania somnifera: immunomodulatory and neuroprotective effects. Cureus. 2023;15(6):e39832.
  8. 8. Gupta M. Immunomodulatory effect of Withania somnifera in healthy subjects: a randomized trial. J Ayurveda Integr Med. 2021;12(3):447–54.
  9. 9. The Plant List. Withania somnifera (L.) Dunal. Royal Botanic Gardens, Kew and Missouri Botanical Garden; 2013.
  10. 10. Singh N, Bhalla M, de Jager P, Gilca M. An overview on Ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011;8(5 Suppl):208–13. https://doi.org/10.4314/ajtcam.v8i5SS.9
  11. 11. Kulkarni SK, Dhir A. Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1093–105. https://doi.org/10.1016/j.pnpbp.2007.09.011
  12. 12. Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of Withania somnifera in reducing stress and anxiety. Indian J Psychol Med. 2012;34(3):255–62. https://doi.org/10.4103/0253-7176.106022
  13. 13. Bhattacharya SK, Muruganandam AV. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol Biochem Behav. 2003;75(3):547–55. https://doi.org/10.1016/S0091-3057(03)00110-2
  14. 14. Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite somniferin attenuate Aβ(25–35)-induced neurodegeneration. Eur J Neurosci. 2006;23(6):1417–26. https://doi.org/10.1111/j.1460-9568.2006.04664.x
  15. 15. Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol. 1996;50(2):69–76. https://doi.org/10.1016/0378-8741(95)01318-0
  16. 16. Davis L, Kuttan G. Immunomodulatory activity of Withania somnifera. J Ethnopharmacol. 2000;71(1–2):193–200. https://doi.org/10.1016/S0378-8741(99)00206-8
  17. 17. Rasool M, Varalakshmi P. Immunomodulatory role of Withania somnifera root powder on experimentally induced inflammation: an in vivo and in vitro study. Vasc Pharmacol. 2006;44(6):406–10. https://doi.org/10.1016/j.vph.2006.01.015
  18. 18. Khan B, Raghavendhar S, Yadav D, Khan A, Javed H. Anti-inflammatory and immunomodulatory properties of Withania somnifera: a comprehensive review. Front Pharmacol. 2021;12:790924.
  19. 19. Bani S, Gautam M, Sheikh FA, Khan B, Satti NK, Suri KA, et al. Immune upregulation and downregulation by Withania somnifera: a comparative study with chemomodulators. Int Immunopharmacol. 2006;6(5):739–47.
  20. 20. Verma N, Gupta SK, Tiwari S, Mishra AK, Gupta RC. A randomized double-blind, placebo-controlled study to evaluate the immunomodulatory effects of Withania somnifera supplementation in healthy adults. J Ethnopharmacol. 2021;265:113368.
  21. 21. Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera Dunal) root. Indian J Exp Biol. 2000;38(6):607–9.
  22. 22. Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol. 2012;84(10):1282–9. https://doi.org/10.1016/j.bcp.2012.08.027
  23. 23. Panda S, Kar A. Evidence for free radical scavenging activity of Ashwagandha root powder in mice. Indian J Physiol Pharmacol. 1997;41(4):424–6.
  24. 24. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Parkinson’s disease: a double-blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004;75(12):1672–7. https://doi.org/10.1136/jnnp.2003.028761
  25. 25. Tripathi YB, Upadhyay AK. Antioxidant properties of Mucuna pruriens in aging brain. J Ethnopharmacol. 2001;76(2):133–8.
  26. 26. Shukla KK, Mahdi AA, Rajender S. Mucuna pruriens improves male fertility by its action on the hypothalamus–pituitary–gonadal axis. Fertil Steril. 2010;94(1):47–54.
  27. 27. Kumar GP, Kumar PV, Prasad DN. Antidiabetic activity of Mucuna pruriens seed extract in streptozotocin-induced diabetic rats. Asian J Pharm Clin Res. 2013;6(2):56–60.
  28. 28. Manyam BV, Dhanasekaran M, Hare TA. Neuroprotective effects of the anti-Parkinson drug Mucuna pruriens. Phytother Res. 2004;18(9):706–12. https://doi.org/10.1002/ptr.1514
  29. 29. Rai D, Bhatia G, Sen T, Palit G. Anti-seizure effects of Mucuna pruriens seed extract. J Ethnopharmacol. 2004;91(2–3):267–72.
  30. 30. Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, et al. Mucuna pruriens in Parkinson’s disease: a randomized, controlled, crossover study. Mov Disord. 2017;32(5):791–7.
  31. 31. Amin KMY, Khan MN, Zillur-Rahman M, Khan NA. Adaptogenic effect of Mucuna pruriens in chronic stress models. Indian J Exp Biol. 1996;34(5):468–70.
  32. 32. Shukla KK, Mahdi AA, Ahmad MK, Shankhwar SN, Rajender S, Jaiswar SP, et al. Mucuna pruriens improves male fertility by its action on the hypothalamus–pituitary–gonadal axis. Fertil Steril. 2009;92(6):1934–40. https://doi.org/10.1016/j.fertnstert.2008.09.045
  33. 33. Ahmad MK, Mahdi AA, Shukla KK, Islam N, Jaiswar SP, Ahmad S. Mucuna pruriens improves male fertility by reducing oxidative stress and lipid peroxidation in seminal plasma of infertile men. Fertil Steril. 2008;90(3):627–35. https://doi.org/10.1016/j.fertnstert.2007.07.1314
  34. 34. Suresh S, Prithiviraj E, Prakash S. Effect of Mucuna pruriens on oxidative stress mediated damage in infertile men: a clinical study. Phytother Res. 2009;23(4):479–85.
  35. 35. Suresh S, Prithiviraj E, Prakash S. Dose-dependent effect of Mucuna pruriens Linn. seed extract on sexual behaviour of normal male rats. J Ethnopharmacol. 2009;122(3):497–501. https://doi.org/10.1016/j.jep.2009.01.032
  36. 36. Husain GM, Singh PN, Kumar V. Adaptogenic and anti-stress activities of Mucuna pruriens Linn. seeds. Indian J Exp Biol. 2009;47(12):991–6.
  37. 37. Pari L, Amarnath Satheesh M. Antidiabetic effect of Mucuna pruriens seed extract on streptozotocin-induced diabetic rats. J Ethnopharmacol. 2004;90(2–3):185–9.
  38. 38. Kannan VR, Rajasekar GS, Rajesh P, Ravi Kumar V, Balasubramanian V. Antidiabetic and antioxidant potential of Mucuna pruriens (L.) DC. seed extract in experimental diabetes. Indian J Exp Biol. 2008;46(2):143–8.
  39. 39. Manjula SN, Kanjanapothi D, Rattanajarasroj S. Evaluation of antidiabetic properties of Mucuna pruriens Linn. seed extract in alloxan-induced diabetic rats. Phytomedicine. 2005;12(5):343–7.
  40. 40. Shukla KK, Mahdi AA, Ahmad MK, Shankhwar SN, Jaiswar SP, Shankhwar P. Clinical evaluation of Mucuna pruriens in type 2 diabetic men: an open-label pilot study. Phytother Res. 2010;24(8):1173–6.
  41. 41. Subramanian R, Jeyakumar R, Namasivayam N. Restorative effect of Mucuna pruriens on oxidative stress and pancreatic β-cell function in type 2 diabetic patients. J Diabetes Complications. 2012;26(4):289–95.
  42. 42. Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, et al. Glycyrrhiza glabra (licorice): a comprehensive review of its phytochemistry, bioactivity, clinical evidence and toxicology. Plants. 2021;10(12):2751. https://doi.org/10.3390/plants10122751
  43. 43. Alqathama R, Aldholmi M, Riaz M, Mukhtar MH, Aljishi F. Biological assessment of Glycyrrhiza glabra L. from distinct natural sources for antidiabetic and anticancer activity. Pharmaceuticals. 2023;16(1). https://doi.org/10.3390/ph16010007
  44. 44. KJ, Madhunapantula S, Reddy D, Mryuthunjaya K, NM. Anti-tumor activity of ethanolic extract of Glycyrrhiza glabra against Ehrlich ascites carcinoma in Swiss albino mice. Int J Basic Clin Pharmacol. 2016:2153–8. https://doi.org/10.18203/2319-2003.ijbcp20163253
  45. 45. Kaur R, Kaur H, Dhindsa AS. Phytopharmacological review of Glycyrrhiza glabra. Int J Pharm Sci Res. 2013;4(7):2470.
  46. 46. Sharma D, Namdeo P, Singh P. Phytochemistry and pharmacological studies of Glycyrrhiza glabra: a review of the medicinal plant. Int J Pharm Sci Rev Res. 2021;67(1):187–94. https://doi.org/10.47583/ijpsrr.2021.v67i01.030
  47. 47. Caroline ML, Muthukumar RS, Priya AHH, Nachiammai N. Anticancer effect of Plectranthus amboinicus and Glycyrrhiza glabra on oral cancer cell line: an in vitro experimental study. Asian Pac J Cancer Prev. 2023;24(3):881–7. https://doi.org/10.31557/APJCP.2023.24.3.881
  48. 48. Račková L, Jančinová V, Petríková M, Drábiková K, Nosáľ R, Štefek M, et al. Stimulatory effects of liquorice extract and glycyrrhizin on anti-inflammatory action mechanism. Nat Prod Res. 2007;21(14):1234–41. https://doi.org/10.1080/14786410701371280
  49. 49. Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2002;73(6):536–9. https://doi.org/10.1016/S0367-326X(02)00168-5
  50. 50. Pharmacological studies on Glycyrrhiza glabra: a review. Pharmacologyonline. 2011;2.
  51. 51. Gupta RK. Phytochemical and pharmacological profile of Sida rhombifolia: a review. J Ethnopharmacol. 2020;256:112750.
  52. 52. Patil S, Ashi H, Hosmani J, Almalki AY, Alhazmi YA, Mushtaq S, et al. Tinospora cordifolia (Thunb.) Miers (Giloy) inhibits oral cancer cells in a dose-dependent manner by inducing apoptosis and attenuating epithelial–mesenchymal transition. Saudi J Biol Sci. 2021;28(8):4553–9. https://doi.org/10.1016/j.sjbs.2021.04.056
  53. 53. Reddy A. Antimicrobial potential of Sida rhombifolia root against multidrug-resistant pathogens. Asian J Pharm Sci. 2021;16(2):145–53.
  54. 54. Sharma P. Hepatoprotective effects of Sida rhombifolia root extract against paracetamol-induced toxicity. Indian J Pharmacol. 2018;50(3):211–8.
  55. 55. Meena AK. Antioxidant and immunomodulatory properties of Sida rhombifolia root extract. Phytomedicine. 2020;69:153228.
  56. 56. Singh V. Effect of Sida rhombifolia root extract on glucose metabolism in diabetic rats. J Herbal Med. 2019;17:100279.
  57. 57. Nair S. Traditional uses and aphrodisiac potential of Sida rhombifolia root: an overview. J Ayurveda Integr Med. 2022;13(1):45–52.
  58. 58. Rajendran P. A review on Sida rhombifolia and its role in Ayurvedic formulations. Anc Sci Life. 2021;40(2):76–84.
  59. 59. Malabadi RB, Sadiya MR, Kolkar KP, Chalannavar RK, Baijnath H. Tinospora cordifolia (Amruthballi): medicinal plant with anticancer activity. Magna Sci Adv Biol Pharm. 2024;11(2):1–9. https://doi.org/10.30574/msabp.2024.11.2.0017
  60. 60. Palmieri A, Scapoli L, Iapichino A, Mercolini L, Mandrone M, Poli F, et al. Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways. Int J Immunopathol Pharmacol. 2019;33. https://doi.org/10.1177/2058738419855567
  61. 61. Shilpa P, Balaraju Y, Salimath BP. Antimetastatic activity of Tinospora cordifolia involves inhibition of cell migration and invasion regulated by twist and snail genes. IOSR J Pharm Biol Sci. 2015;10(2):44–9.
  62. 62. Patel G, MH, DS, Paarakh PM. Anticancer studies on the leaves of Tinospora cordifolia (Willd.) Miers. Int J Adv Res (Indore). 2022;10(10):1029–35. https://doi.org/10.21474/IJAR01/15578
  63. 63. Sharma R, Amin H, Galib, Prajapati PK. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed. 2015;5(1):68–78. https://doi.org/10.1016/S2221-1691(15)30173-8
  64. 64. Ruan CT, Lam SH, Chi TC, Lee SS, Su MJ. Borapetoside C from Tinospora crispa improves insulin sensitivity in diabetic mice. Phytomedicine. 2012;19(8–9):719–24. https://doi.org/10.1016/j.phymed.2012.03.009
  65. 65. Patel MB, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine. 2011;18(12):1045–52. https://doi.org/10.1016/j.phymed.2011.05.006
  66. 66. Shivananjappa MM, Muralidhara. Abrogation of maternal and fetal oxidative stress in the streptozotocin-induced diabetic rat by dietary supplements of Tinospora cordifolia. Nutrition. 2012;28(5):581–7. https://doi.org/10.1016/j.nut.2011.09.015
  67. 67. Reddy NM, Reddy NR. Tinospora cordifolia chemical constituents and medicinal properties: a review. Scholars Acad J Pharm. 2015:364–9.
  68. 68. Patil SV, Patil CD, Salunke BK, Salunkhe RB. Anti-inflammatory activity of Cyanthillium cinereum leaf extract in experimental models. J Ethnopharmacol. 2012;140(1):77–81.
  69. 69. Bhaskar VH, Balakrishnan N. Analgesic and anti-inflammatory properties of Cyanthillium cinereum. Asian J Pharm Clin Res. 2011;4(2):45–9.
  70. 70. Ravikumar S, Gnanadesigan M, Kalaiarasi A, Inbaneson SJ. Hepatoprotective and antioxidant properties of Cyanthillium cinereum in carbon tetrachloride-induced liver toxicity. Int J Biol Sci. 2013;9(1):50–6.
  71. 71. Singh R, Kaur N, Rani N. Gastroprotective and antipyretic effects of Cyanthillium cinereum methanolic extract. J Med Plants Res. 2010;4(5):389–94.
  72. 72. Udomsangpetch R, Thanomsuk P, Pukrittayakamee S. Effectiveness of Cyanthillium cinereum as an herbal smoking cessation aid. Thai J Pharm Sci. 2015;39(3):112–9.

Downloads

Download data is not yet available.