Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Application of root endophytes Piriformospora indica (Serendipita indica) and arbuscular mycorrhizal fungus Glomus mosseae enhances nutrient acquisition, growth and yield in cassava

DOI
https://doi.org/10.14719/pst.10755
Submitted
19 July 2025
Published
10-12-2025

Abstract

The study explores the application of the root endophytes Piriformospora indica and the arbuscular mycorrhizal fungus (AMF) Glomus mosseae as biofertilizers to enhance cassava growth and productivity. The successful colonization of cassava roots by P. indica and AMF was detected, confirming their effective association with the host plant. Root growth parameters were found to be significantly increased in the cassava plants colonized by P. indica when compared to uninoculated control plants. In a field study, the combination of 75 % of the recommended NPK dose along with P. indica was identified as the most effective treatment for enhancing growth and yield attributes. In contrast, the combination of 75 % of the NPK dose along with AMF showed the most significant improvement in total dry matter content and tuber quality parameters. The results showed that the nutrient dose can be reduced to a level of 75 % of the recommended dose, without compromising the growth and yield, if the chemical fertilizers are applied along with the bio-inoculants, either P. indica or AMF. The same treatments also resulted in higher total nitrogen uptake, while the combination of 100 % NPK and AMF resulted in better phosphorus and potassium uptake by the cassava plants.  This is the first report demonstrating root colonization, growth promotion and improved nutrient acquisition in cassava following inoculation with the beneficial root endophyte P. indica.

References

  1. 1. El-sharkwy MA. Stress-tolerant cassava: The role of integrative ecophysiology-breeding research in crop improvement. Open J Soil Sci. 2012;2:162-86. https://doi.org/10.4236/ojss.2012.22022
  2. 2. Sery DJ-M, Kouadjo ZDC, Voko BRRR, Zeze A. Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Front Microbiol. 2016;7:2063. https://doi.org/10.3389/fmicb.2016.02063
  3. 3. Savci S. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia. 2012;1:287-92. https://doi.org/10.1016/j.apcbee.2012.03.047
  4. 4. Sadhana B. Arbuscular mycorrhizal fungi (AMF) as a biofertilizers-a review. Int J Curr Microbiol Appl Sci. 2014;3:384–400.
  5. 5. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci. 2017;8:1617. https://doi.org/10.3389/fpls.2017.01617
  6. 6. Varma A, Verma S, Sudha S, Sahay N, Bütehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol. 1999;65:2741–44. https://doi.org/10.1128/aem.65.6.2741-2744.1999
  7. 7. Varkey S, Anith KN, Narayana R, Aswini S. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere. 2018;5:38–42. https://doi.org/10.1016/j.rhisph.2017.11.005
  8. 8. Anith KN, Faseela KM, Archana PA, Prathapan KD. Compatability of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis. 2011;55:11-17. https://doi.org/10.1007/s13199-011-0143-1
  9. 9. Athira S, Anith KN. Plant growth promotion and suppression of bacterial wilt incidence in tomato by rhizobacteria, bacterial endophytes and the root endophytic fungus Piriformospora indica. Indian Phytopathol. 2020;73:629-642. https://doi.org/10.1007/s42360-020-00283-2
  10. 10. Paul T, Nysanth NS, Yashaswini MS, Anith KN. Inoculation with bacterial endophytes and the fungal root endophyte, Piriformospora indica improves plant growth and reduces foliar infection by Phytophthora capsici in black pepper. J Trop Agric. 2021;59:224-35. https://jtropag.kau.in/index.php/ojs2/article/view/1013
  11. 11. Mani KM, Ameena M, Johnson JM, Anith KN, Pillai PS, John J, et al. Endophytic fungus Piriformospora indica mitigates moisture stress in rice by modifying root growth. Rhizosphere. 2023;28:100799. https://doi.org/10.1016/j.rhisph.2023.100799
  12. 12. Subhash AP, Veena SS, Makeshkumar T, Anith KN. Piriformospora indica and arbuscular mycorrhizal fungus suppress fungal root rot and mosaic diseases of cassava. Symbiosis. 2025;95:241-54. https://doi.org/10.1007/s13199-025-01044-3
  13. 13. Das A, Kamal S, Shakil NA, Sherameti I, Oelmuller R, Dua M, et al. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of Coleus forskohlii. Plant Signal Behav. 2012;7:103–12. https://doi.org/10.4161/psb.7.1.18472
  14. 14. Anith KN, Aswini S, Varkey S, Radhakrishnan NV, Nair DS. Root colonization by the endophytic fungus Piriformospora indica improves growth, yield and piperine content in black pepper (Piper nigrum L.). Biocatal Agric Biotechnol. 2018;14:215-220. https://doi.org/10.1016/j.bcab.2018.03.012
  15. 15. Sahay NS, Varma A. Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett. 1999;181:297-302. https://doi.org/10.1016/S0378-1097(99)00542-X
  16. 16. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:1338-39. https://doi.org/10.1073/pnas.0504423102
  17. 17. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al. Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol. 2016;7:1-20. https://doi.org/10.3389/fmicb.2016.00332
  18. 18. Rai M, Acharya D, Singh A, Varma A. Positive growth responses of Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza. 2001;11:123-28. https://doi.org/10.1007/s005720100115
  19. 19. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R. Piriformospora indica stimulates expression of nitrate reductase and glucan-water dikinase in tobacco and Arabidopsis roots via a conserved promoter motif. J Biol Chem. 2005;280:26241–47. https://doi.org/10.1074/jbc.M500447200
  20. 20. Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, et al. Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav. 2011;6:723–25. https://doi.org/10.4161/psb.6.5.15106
  21. 21. Aslam MM, Karanja K, Bello SK. Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol. 2019;106:232–37. https://doi.org/10.1016/j.pmpp.2019.02.010
  22. 22. Lakshmipriya P, Nath VS, Veena SS, Anith KN, Sreekumar J, Jeeva ML. Piriformospora indica, a cultivable endophyte for growth promotion and disease management in taro. J Root Crops. 2016;42:107-14.
  23. 23. He XH, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks. Crit Rev Plant Sci. 2003;22:531–67. https://doi.org/10.1080/713608315
  24. 24. Ekanayake IJ, Oyetunji OJ, Osonubi O, Lyasse O. Effects of arbuscular mycorrhizal fungi and water stress on leaf chlorophyll production of cassava. J Food Agric Environ. 2004;2:190-196.
  25. 25. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 2017;8:25–16. https://doi.org/10.3389/fmicb.2017.02516
  26. 26. Porcel R, Aroca R, Ruiz-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron Sustain Dev. 2011;32:181–200. https://doi.org/10.1007/s13593-011-0029-x
  27. 27. Auge RM, Toler HD, Saxton AM. Arbuscular mycorrhizal symbiosis alters stomatal conductance under drought more than under ample water: a meta-analysis. Mycorrhiza. 2015;25:13–24. https://doi.org/10.1007/s00572-014-0585-4
  28. 28. Satheesan J, Narayanan AK, Sakunthala M. Induction of root colonization by Piriformospora indica enhances asiaticoside production in Centella asiatica. Mycorrhiza. 2012;22:195-202. https://doi.org/10.1007/s00572-011-0394-y
  29. 29. Philip JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and VAM fungi. Trans Br Mycol Soc. 1970;55:158-61. https://doi.org/10.1016/S0007-1536(70)80110-3
  30. 30. Kerala Agricultural University. Package of Practices Recommendations: Crops. 15th ed. Thrissur: KAU Press. 2016.
  31. 31. Subbiah BV, Asija LL. A rapid procedure for estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60.
  32. 32. Jackson ML. Soil Chemical Analysis. New Delhi: Prentice Hall of India Pvt. Ltd. 1973.
  33. 33. Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M. Piriformospora indica requires host cell death for proliferation during symbiosis with barley. Proc Natl Acad Sci USA. 2006;103:18450–57. https://doi.org/10.1073/pnas.0605697103
  34. 34. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V. Broad-spectrum suppression of innate immunity enables Arabidopsis colonization by Piriformospora indica. Plant Physiol. 2011;156:726–40. https://doi.org/10.1104/pp.111.176446
  35. 35. Sahay NS, Varma A. A biological approach towards increasing survival rates of micropropagated plants. Curr Sci. 2000;78:126-29.
  36. 36. Sirrenberg A, Gobel C, Grond S, Czempinski N, Ratzinger A, Karlovski P, et al. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581-89. https://doi.org/10.1111/j.1399-3054.2007.00983.x
  37. 37. Vanneste S, Friml J. Auxin: A trigger for change in plant development. Cell. 2009;136:1005-16. https://doi.org/10.1016/j.cell.2009.03.001
  38. 38. Casimiro I, Marchant A, Bhalerao RP, Swarup R, Graham N, Inzé D, et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:843-52. https://doi.org/10.1016/j.cell.2009.03.001
  39. 39. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens enhances biomass and lateral root growth via an auxin-dependent mechanism. Plant Physiol. 2009;149:1579-92. https://doi.org/10.1104/pp.108.130369
  40. 40. Lee YC, Johnson JM, Chien CT. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 2011;24:421-31. https://doi.org/10.1094/MPMI-05-10-0110
  41. 41. Straker CJ, Hilditch AJ, Rey MEC. Arbuscular mycorrhizal fungi associated with cassava in South Africa. S Afr J Bot. 2010;76:102–11. https://doi.org/10.1016/j.sajb.2009.09.005
  42. 42. Rodriguez A, Sanders IR. The role of community and population ecology in applying mycorrhizal fungi for food security. ISME J. 2015;9:1053-61. https://doi.org/10.1038/ismej.2014.207
  43. 43. Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE. Effects of arbuscular mycorrhizae on tomato yield under deficit irrigation. Sci Total Environ. 2016;566:1223–34. https://doi.org/10.1016/j.scitotenv.2016.05.178
  44. 44. Sarma MVRK, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A. Carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato. J Appl Microbiol. 2011;111:456–66. https://doi.org/10.1111/j.1365-2672.2011.05062.x
  45. 45. Conchillo LB, Haro R, Benito B. K nutrition exchange in the Serendipita-Arabidopsis symbiosis: fungal K transporters involved. Front Ecol Evol. 2021;9:789371. https://doi.org/10.3389/fevo.2021.789371
  46. 46. Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW. Nitrogen transfer in arbuscular mycorrhizal symbiosis. Nature. 2005;435:819–23. https://doi.org/10.1038/nature03610
  47. 47. Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L. Characterization of the Tuber borchii nitrate reductase gene. Mol Genet Genomics. 2003;269:807–16. https://doi.org/10.1007/s00438-003-0894-3
  48. 48. de Andrade SAL, Domingues AP, Mazzafera P. Photosynthesis induced in rice under arsenate stress when associated with AM fungi. Chemosphere. 2015;134:141–49. https://doi.org/10.1016/j.chemosphere.2015.04.023
  49. 49. Aliyu IA, Yusuf AA. Phosphorus fertilizer and AM fungal inoculants interaction in cassava. Bayero J Pure Appl Sci. 2017;10:243–46. https://doi.org/10.4314/bajopas.v10i1.49S
  50. 50. Alhadidi N, Pap Z, Ladányi M, Szentpéteri V, Kappel N. Mycorrhizal inoculation effect on sweet potato seedlings. Agronomy. 2021;11:2019. https://doi.org/10.3390/agronomy11102019

Downloads

Download data is not yet available.