Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Direct-seeded rice in India: A sustainable transition in cultivation practices

DOI
https://doi.org/10.14719/pst.10872
Submitted
24 July 2025
Published
14-10-2025

Abstract

In the era of climate change, declining freshwater availability and rising labour costs are driving the search for alternative management systems to enhance grain yields and meet the demand of a growing global population. Direct-seeded rice (DSR) has emerged as a sustainable alternative to traditional puddled transplanted rice, primarily due to its reduced input requirements, particularly water, as it eliminates the need for continuous field submergence. Simultaneously, it reduces labour requirement as it eliminates the need for a nursery. DSR offers significant advantages, including reduced water use (up to 50 %), lower greenhouse gas emissions, decreased labour dependency, improved soil health and enhanced economic returns. However, its widespread adoption is hindered by several challenges such as poor seedling establishment, high weed pressure, lodging susceptibility and nematode infestations. Recent advances in next-generation breeding strategies, including genome-wide association studies, gene editing, genomic selection and haplotype-based breeding, are increasingly being applied to address these challenges and develop rice varieties for DSR systems. Essential adaptive traits for successful DSR establishment include anaerobic germination potential, early seedling vigour, herbicide tolerance, strong root architecture and lodging resistance. By highlighting the critical role of these traits in DSR adaptation, this review underscores their potential impact and offers insights to advance DSR practices, while outlining the prerequisites for its successful cultivation.

References

  1. 1. Samal P, Babu SC, Mondal B, Mishra SN. The global rice agriculture towards 2050: An inter-continental perspective. Outlook Agric. 2022;51(2):164-72. https://doi.org/10.1177/00307270221088338
  2. 2. Mondal B, Bisen J, Jambhulkar NN, Tripathi R. Rice supply, demand and exportable surplus in India: Present vis-à-vis thirty years ahead. 2022. https://doi.org/10.35709/ory.2022.59.4.13
  3. 3. Singh J, Singh AG. A review on direct seeded rice: A sustainable approach to paddy cultivation. International Journal of Scientific Research & Engineering Trends. 2024;10(5):1769-77. https://doi.org/10.61137/ijsret.vol.10.issue5.226
  4. 4. Singh K, Kumar V, Saharawat YS, Gathala MK, Ladha JK, Chauhan BS. Weedy rice: An emerging threat for direct-seeded rice production systems in India. 2013. https://doi.org/10.4172/2375-4338.1000106
  5. 5. Pathak H, Sankhyan S, Dubey DS, Bhatia A, Jain N. Dry direct-seeding of rice for mitigating greenhouse gas emission: Field experimentation and simulation. Paddy and Water Environment. 2013;11:593-601. https://doi.org/10.1007/s10333-012-0352-0
  6. 6. Singh UM, Yadav S, Dixit S, Ramayya PJ, Devi MN, Raman KA, et al. QTL hotspots for early vigor and related traits under dry direct-seeded system in rice (Oryza sativa L.). Front Plant Sci. 2017;8:286. https://doi.org/10.3389/fpls.2017.00286
  7. 7. Grigg DB. The agricultural systems of the world: An evolutionary approach. Vol. 343. Cambridge University Press. 1974. https://doi.org/10.1017/CBO9780511665882
  8. 8. Anandan A, Anumalla M, Pradhan SK, Ali J. Population structure, diversity and trait association analysis in rice (Oryza sativa L.) germplasm for early seedling vigor (ESV) using trait linked SSR markers. PLoS One. 2016;11(3):e0152406. https://doi.org/10.1371/journal.pone.0152406
  9. 9. Kamboj R, Singh D, Kaur L. Adoption status of direct seeded rice technology by the farmers of Punjab. Indian Journal of Extension Education. 2022;58(1):76-80. http://doi.org/10.48165/IJEE.2022.58117
  10. 10. Tripathi RS, Raju R, Thimmappa K. Economics of direct seeded and transplanted methods of rice production in Haryana. oryza. 2014;51(1):70-3.
  11. 11. Dey S, Abbhishek K, Saraswathibatla S, Das D. Economic suitability of direct seeded rice across different geographies in India. PLoS One. 2025;20(4):e0321472. https://doi.org/10.1371/journal.pone.0321472
  12. 12. Pathak H, Bisen JP, Jambulkar NN, Tripathi R, Panda BB. Eco-regional-based rice farming for enhancing productivity, profitability and sustainability. 2020.
  13. 13. Mishra S, Chaubey AK, Pathak J. Direct seeded rice: Prospects, constraints and future research work. 2023.
  14. 14. Singh VK, Gautam P, Nanda G, Dhaliwal SS, Pramanick B, Meena SS, et al. Soil test-based fertilizer application improves productivity, profitability and nutrient use efficiency of rice (Oryza sativa L.) under direct seeded condition. Agronomy. 2021;11(9):1756. https://doi.org/10.3390/agronomy11091756
  15. 15. Farooq M, Siddique KHM, Rehman H, Aziz T, Lee DJ, Wahid A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011;111(2):87-98. https://doi.org/10.1016/j.still.2010.10.008
  16. 16. Sarkar RK, Das S. Yield of rainfed lowland rice with medium water depth under anaerobic direct seeding and transplanting. Tropical Science. 2003;43(4):192-8. https://doi.org/10.1002/ts.117
  17. 17. Quilloy FA, Labaco B, Casal C, Dixit S. Crop establishment in direct-seeded rice: Traits, physiology and genetics. Rice improvement. 2021;171-202. https://doi.org/10.1007/978-3-030-66530-2_6
  18. 18. Dey S, Abbhishek K, Saraswathibatla S, Singh PK, Bommaraboyina PR, Raj A, et al. Empirical evidence for economic viability of direct seeded rice in peninsular India: An action-based research. Heliyon. 2024;10(5). https://doi.org/10.1016/j.heliyon.2024.e26754
  19. 19. Rana MM, Al Mamun MA, Zahan A, Ahmed MN, Mridha MAJ. Effect of planting methods on the yield and yield attributes of short duration Aman rice. Am J Plant Sci. 2014;2014. http://doi.org/10.4236/ajps.2014.53033
  20. 20. Kato Y, Okami M, Katsura K. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 2009;113(3):328-34. https://doi.org/10.1016/j.fcr.2009.06.010
  21. 21. Sattar MA, Bhuiyan SI. Performance of direct-seeded and transplanted rice under different water management practices. Bangladesh Rice J. 1994;3(1 & 2):1-5.
  22. 22. Cabangon RJ, Tuong TP, Abdullah NB. Comparing water input and water productivity of transplanted and direct-seeded rice production systems. Agric Water Manag. 2002;57(1):11-31. https://doi.org/10.1016/S0378-3774(02)00048-3
  23. 23. Kumar V, Ladha JK. Direct seeding of rice: recent developments and future research needs. Advances in agronomy. 2011;111:297-413. https://doi.org/10.1016/B978-0-12-387689-8.00001-1
  24. 24. Yadav DB, Yadav A, Vats AK, Gill G, Malik RK. Direct seeded rice in sequence with zero-tillage wheat in north-western India: Addressing system-based sustainability issues. SN Appl Sci. 2021;3(11):844. https://doi.org/10.1007/s42452-021-04827-7
  25. 25. Dawe D. Increasing water productivity in rice-based systems in Asia-past trends, current problems and future prospects. Plant Prod Sci. 2005;8(3):221-30. https://doi.org/10.1626/pps.8.221
  26. 26. Gupta K, Kumar R, Baruah KK, Hazarika S, Karmakar S, Bordoloi N. Greenhouse gas emission from rice fields: A review from Indian context. Environmental Science and Pollution Research. 2021;28(24):30551-72. https://doi.org/10.1007/s11356-021-13935-1
  27. 27. Liu Y, Liu W, Geng X, Liu B, Fu X, Guo L, et al. Direct-seeded rice reduces methane emissions by improving root physiological characteristics through affecting the water status of paddy fields. Rhizosphere. 2022;24:100628. https://doi.org/10.1016/j.rhisph.2022.100628
  28. 28. Chatterjee BN, Maiti S. Principles & practices of rice growing. 1981.
  29. 29. Yoshida S. Fundamentals of rice crop science. Int. Rice Res. Inst. 1981.
  30. 30. Tyagi R, Chander JKS. Comparative analysis between direct seeded rice and conventional transplanted rice method. The Pharma Innovation Journal. 2020;9(6):236-8.
  31. 31. Mohanty M, Painuli DK, Mandal KG. Effect of puddling intensity on temporal variation in soil physical conditions and yield of rice (Oryza sativa L.) in a Vertisol of central India. Soil Tillage Res. 2004;76(2):83-94. https://doi.org/10.1016/j.still.2003.08.006
  32. 32. Alam MK, Bell RW, Hasanuzzaman M, Salahin N, Rashid MH, Akter N, et al. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy. 2020;10(6):888. https://doi.org/10.3390/agronomy10060888
  33. 33. Kumar V, Singh S, Kumar RM, Sharma S, Tripathi R, Nayak AK, et al. Growing Rice in Eastern India: New Paradigms of risk reduction and improving productivity. In: The future rice strategy for India. Elsevier. 2017. p. 221-58.
  34. https://doi.org/10.1016/B978-0-12-805374-4.00008-7
  35. 34. Van Hung N, Thach TN, Hoang NN, Binh NCQ, Tâm DM, Hau TT, et al. Mechanized wet direct seeding for increased rice production efficiency and reduced carbon footprint. Precis Agric. 2024;25(5):2226-44. https://doi.org/10.1007/s11119-024-10163-8
  36. 35. Pan S, Wen X, Wang Z, Ashraf U, Tian H, Duan M, et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Res. 2017;203:139-49. https://doi.org/10.1016/j.fcr.2016.12.011
  37. 36. Saha S, Munda S, Singh S, Kumar V, Jangde HK, Mahapatra A, et al. Crop establishment and weed control options for sustaining dry direct seeded rice production in eastern India. Agronomy. 2021;11(2):389. https://doi.org/10.3390/agronomy11020389
  38. 37. Romana GS. Direct seeded rice versus normal transplanted rice: An economic comparison. Indian J Econ Dev. 2014;10(2):117-22. http://doi.org/10.5958/j.2322-0430.10.2.039
  39. 38. Azhiri-Sigari T, Gines H, Sebastian LS, Wade L. Seedling vigor of rice cultivars in response to seeding depth and soil moisture. 2005.
  40. 39. Singh R, Mahajan G, Bhullar MS. Direct seeded rice in North-West India-opportunities, scope and research gaps. ICAR-Agricultural Technology Application Research Institute, Ludhiana. 2016;52.
  41. 40. Namuco OS, Cairns JE, Johnson DE. Investigating early vigour in upland rice (Oryza sativa L.): Part I. Seedling growth and grain yield in competition with weeds. Field Crops Res. 2009;113(3):197-206. https://doi.org/10.1016/j.fcr.2009.05.008
  42. 41. Caton BP. A practical field guide to weeds of rice in Asia. Int. Rice Res. Inst. 2004.
  43. 42. Sen S, Kaur R, Das TK. Weed management in dry direct-seeded rice: Assessing the impacts on weeds and crop. Indian Journal of Weed Science. 2020;52(2):169-74. https://doi.org/10.5958/0974-8164.2020.00030.1
  44. 43. Saravanane P, Pavithra M, Vijayakumar S. Weed management in direct seeded rice. Indian Farming. 2021;71(04):61-4.
  45. 44. Chhokar RS, Sharma RK, Gathala MK, Pundir AK. Effects of crop establishment techniques on weeds and rice yield. Crop Protection. 2014;64:7-12. https://doi.org/10.1016/j.cropro.2014.05.016
  46. 45. Adkins SW. Some present problems and future approaches to weed management in the Asian-Pacific region: supporting food and environment security by 2020. 2013.
  47. 46. Kumar A, Kumar S, Dahiya K, Kumar S, Kumar M. Productivity and economics of direct seeded rice (Oryza sativa L.). Journal of Applied and Natural Science. 2015;7(1):410. https://doi.org/10.31018/jans.v7i1.625
  48. 47. Hussain S, Ramzan M, Akhter M, Aslam M. Weed management in direct seeded rice. 2015.
  49. 48. Sandhu N, Yadav S, Kumar Singh V, Kumar A. Effective crop management and modern breeding strategies to ensure higher crop productivity under direct seeded rice cultivation system: A review. Agronomy. 2021;11(7):1264. https://doi.org/10.3390/agronomy11071264
  50. 49. Yang Z, Zhang L, Li X, Lin Y, Ye S, Ding Z. Population dynamics of Meloidogyne graminicola in soil in different types of direct-seeded rice agroecosystems in Hunan Province, China. J Nematol. 2023;55(1):20230040. https://doi.org/10.2478/jofnem-2023-0040
  51. 50. Malviya D, Singh P, Singh UB, Paul S, Kumar Bisen P, Rai JP, et al. Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice (Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front Microbiol. 2023;14:1104490. https://doi.org/10.3389/fmicb.2023.1104490
  52. 51. Dubey A, Mishra MK, Singh PK, Vyas D. Occurrence of AM fungi at varying stages of growth of rice plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences . 2008;78:51-5.
  53. 52. Yadav S, Singh UM, Naik SM, Venkateshwarlu C, Ramayya PJ, Raman KA, et al. Molecular mapping of QTLs associated with lodging resistance in dry direct-seeded rice (Oryza sativa L.). Front Plant Sci. 2017;8:1431. https://doi.org/10.3389/fpls.2017.01431
  54. 53. Hirano K, Okuno A, Hobo T, Ordonio R, Shinozaki Y, Asano K, et al. Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One. 2014;9(7):e96009. https://doi.org/10.1371/journal.pone.0096009
  55. 54. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun. 2010;1(1):132. https://doi.org/10.1038/ncomms1132
  56. 55. Chen WY, Liu ZM, Deng GB, Pan ZF, Liang JJ, Zeng XQ, et al. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genet Mol Res. 2014;13(1):1909-25. http://doi.org/10.4238/2014.March.17.19
  57. 56. Rao AN, Wani SP, Ramesha MS, Ladha JK. Rice production systems. Rice production worldwide. 2017;185-205. https://doi.org/10.1007/978-3-319-47516-5_8
  58. 57. Stoop WA, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resource-poor farmers. Agric Syst. 2002;71(3):249-74. https://doi.org/10.1016/S0308-521X(01)00070-1
  59. 58. Styger E, Uphoff N. The system of rice intensification (SRI): Revisiting agronomy for a changing climate. 2016.
  60. 59. Kesh H, Khan M. Varietal characterization and variables investigation for basmati rice genotypes adaptation in wet direct seeding and system of rice intensification. Int J Plant Prod. 2023;17(3):617-35. https://doi.org/10.1007/s42106-023-00261-4
  61. 60. Thapa R, Tabien RE, Thomson MJ, Septiningsih EM. Genetic factors underlying anaerobic germination in rice: Genome-wide association study and transcriptomic analysis. Plant Genome. 2024;17(1):e20261. https://doi.org/10.1002/tpg2.20261
  62. 61. Shanmugam A, Manivelan K, Deepika K, Nithishkumar G, Blessy V, Monihasri RB, et al. Unraveling the genetic potential of native rice (Oryza sativa L.) landraces for tolerance to early-stage submergence. Front Plant Sci. 2023;14:1083177. https://doi.org/10.3389/fpls.2023.1083177
  63. 62. Ismail AM, Ella ES, Vergara G V, Mackill DJ. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann Bot. 2009;103(2):197-209. https://doi.org/10.1093/aob/mcn211
  64. 63. Magneschi L, Perata P. Rice germination and seedling growth in the absence of oxygen. Ann Bot. 2009;103(2):181-96. https://doi.org/10.1093/aob/mcn121
  65. 64. Lee KW, Chen PW, Lu CA, Chen S, Ho THD, Yu SM. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal. 2009;2(91):ra61-ra61. https://doi.org/10.1126/scisignal.2000333
  66. 65. Vinitha A, Vijayalakshmi D, Parthipan T. Physiology and performance of anaerobic germination tolerant rice varieties under direct seeded cultivation. Plant Physiology Reports. 2024;29(2):249-61. https://doi.org/10.1007/s40502-024-00780-w
  67. 66. Mohanapriya G, Thiruvengadam SK V, Raveendran M, Manonmani S. Identification of anaerobic germination tolerant landraces and validation of molecular marker in rice (Oryza sativa L.). Electronic Journal of Plant Breeding. 2022;13(3):873-81. https://doi.org/10.37992/2022.1303.110
  68. 67. Barik SR, Pandit E, Sanghamitra P, Mohanty SP, Behera A, Mishra J, et al. Unraveling the genomic regions controlling the seed vigour index, root growth parameters and germination per cent in rice. PLoS One. 2022;17(7):e0267303. https://doi.org/10.1371/journal.pone.0267303
  69. 68. Subramanian S, Ramamoorthy P, Alagesan S, Amalraj JJ, Alagarsamy S, Sengalan M, et al. Unlocking the genetic potential of Indian rice germplasm across different environments for early seedling vigour. Genet Resour Crop Evol. 2025;72(2):1459-76. https://doi.org/10.1007/s10722-024-02055-7
  70. 69. Cui Y, Huang S, Liu Z, Yi S, Zhou F, Chen H, et al. Development of novel glyphosate-tolerant japonica rice lines: A step toward commercial release. Front Plant Sci. 2016;7:1218. https://doi.org/10.3389/fpls.2016.01218
  71. 70. Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL. Imidazolinone-tolerant crops: History, current status and future. Pest Management Science. Formerly Pesticide Science. 2005;61(3):246-57. https://doi.org/10.1002/ps.993
  72. 71. Endres AB, Gardner JG. Genetically Engineered Rice: A Summary of the LL Rice 601 Incident1. Agric. L. & Tax Brief. 2006.
  73. 72. Saha S, Munda S, Jangde HK. Prospects of herbicide-tolerant rice under Indian perspective. 2018.
  74. 73. Te Z, LIN C yang, SHEN Z cheng. Development of transgenic glyphosate-resistant rice with G6 gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Agric Sci China. 2011;10(9):1307-12. https://doi.org/10.1016/S1671-2927(11)60123-5
  75. 74. Jin M, Chen L, Deng XW, Tang X. Development of herbicide resistance genes and their application in rice. Crop J. 2022;10(1):26-35. https://doi.org/10.1016/j.cj.2021.05.007
  76. 75. Devine MD. Why are there not more herbicide-tolerant crops? Pest Management Science. formerly Pesticide Science. 2005;61(3):312-7. https://doi.org/10.1002/ps.1023
  77. 76. Shoba D, Raveendran M, Manonmani S, Utharasu S, Dhivyapriya D, Subhasini G, et al. Development and genetic characterization of a novel herbicide (Imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice. 2017;10:1-12. https://doi.org/10.1186/s12284-017-0151-8
  78. 77. Kar MK, Chakraborti M, Munda S, Saha S, Swain P, Mukherjee AK, et al. Herbicide Tolerant Rice Research in India. 2024.
  79. 78. Meng B, Wang T, Luo Y, Xu D, Li L, Diao Y, et al. Genome-wide association study identified novel candidate loci/genes affecting lodging resistance in rice. Genes (Basel). 2021;12(5):718. https://doi.org/10.3390/genes12050718
  80. 79. Rani Sinniah U, Wahyuni S, Syahputra BSA, Gantait S. A potential retardant for lodging resistance in direct seeded rice (Oryza sativa L.). Canadian Journal of Plant Science. 2012;92(1):13-8. https://doi.org/10.4141/cjps2011-089
  81. 80. Panda D, Mishra SS, Behera PK. Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Sci. 2021;28(2):119-32. https://doi.org/10.1016/j.rsci.2021.01.002
  82. 81. Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? Ann Bot. 2012;110(6):1303-16. https://doi.org/10.1093/aob/mcs109
  83. 82. Sandhu N, Raman KA, Torres RO, Audebert A, Dardou A, Kumar A, et al. Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol. 2016;171(4):2562-76. https://doi.org/10.1104/pp.16.00705
  84. 83. Zhang H, Xue Y, Wang Z, Yang J, Zhang J. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res. 2009;113(1):31-40. https://doi.org/10.1016/j.fcr.2009.04.004
  85. 84. Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Int J Mol Sci. 2020;21(7):2590. https://doi.org/10.3390/ijms21072590
  86. 85. Fujino K, Hirayama Y, Kaji R. Marker-assisted selection in rice breeding programs in Hokkaido. Breed Sci. 2019;69(3):383-92. https://doi.org/10.1270/jsbbs.19062
  87. 86. Badri J, Padmashree R, Anilkumar C, Mamidi A, Isetty SR, Swamy A, et al. Genome-wide association studies for a comprehensive understanding of the genetic architecture of culm strength and yield traits in rice. Front Plant Sci. 2024;14:1298083. https://doi.org/10.3389/fpls.2023.1298083
  88. 87. Angaji SA. Mapping QTLs for submergence tolerance during germination in rice. Afr J Biotechnol. 2008;7(15).
  89. 88. Septiningsih EM, Ignacio JCI, Sendon PMD, Sanchez DL, Ismail AM, Mackill DJ. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theoretical and Applied Genetics. 2013;126:1357-66. https://doi.org/10.1007/s00122-013-2057-1
  90. 89. Baltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica. 2014;197:251-60.
  91. https://doi.org/10.1007/s10681-014-1064-x
  92. 90. Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola. BMC Genet. 2018;19:1-17. https://doi.org/10.1186/s12863-018-0656-1
  93. 91. Baltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. Breed Sci. 2019;69(2):227-33. https://doi.org/10.1270/jsbbs.18159
  94. 92. Jeong J, Cho Y, Jeong J, Mo Y, Kim C, Kim W, et al. QTL mapping and effect confirmation for anaerobic germination tolerance derived from the japonica weedy rice landrace PBR. Plant Breeding. 2020;139(1):83-92. https://doi.org/10.1111/pbr.12753
  95. 93. Ghosal S, Quilloy FA, Casal C, Septiningsih EM, Mendioro MS, Dixit S. Trait-based mapping to identify the genetic factors underlying anaerobic germination of rice: Phenotyping, GXE and QTL mapping. BMC Genet. 2020;21:1-13.
  96. https://doi.org/10.1186/s12863-020-0808-y
  97. 94. Ignacio JCI, Zaidem M, Casal Jr C, Dixit S, Kretzschmar T, Samaniego JM, et al. Genetic mapping by sequencing more precisely detects loci responsible for anaerobic germination tolerance in rice. Plants. 2021;10(4):705. https://doi.org/10.3390/plants10040705
  98. 95. Liu L, Li X, Liu S, Min J, Liu W, Pan X, et al. Identification of QTLs associated with the anaerobic germination potential using a set of Oryza nivara introgression lines. Genes Genomics. 2021;43(4):399-406. https://doi.org/10.1007/s13258-021-01063-6
  99. 96. Liang W, Du H, Pang B, Cheng J, He B, Hu F, et al. High-density genetic mapping identified QTLs for anaerobic germination tolerance in rice. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.1076600
  100. 97. Xu S, Fei Y, Wang Y, Zhao W, Hou L, Cao Y, et al. Identification of a Seed Vigor-Related QTL cluster associated with weed competitive ability in direct-seeded rice (Oryza Sativa L.). Rice. 2023;16(1):45. https://doi.org/10.1186/s12284-023-00664-x
  101. 98. Kim S, Kim C, Jeong J, Reinke RF, Jeong J. Marker-assisted breeding for improvement of anaerobic germination in japonica rice (Oryza sativa). Plant Breeding. 2019;138(6):810-9. https://doi.org/10.1111/pbr.12719
  102. 99. Sandhu N, Dixit S, Swamy BPM, Raman A, Kumar S, Singh SP, et al. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice. 2019;12:1-16. https://doi.org/10.1186/s12284-019-0269-y
  103. 100. Subedi SR, Sandhu N, Singh VK, Sinha P, Kumar S, Singh SP, et al. Genome-wide association study reveals significant genomic regions for improving yield, adaptability of rice under dry direct seeded cultivation condition. BMC Genomics. 2019;20:1-20. https://doi.org/10.1186/s12864-019-5840-9
  104. 101. Xu P, Qin Y, Ma M, Liu T, Ruan F, Xue L, et al. Genome-wide association study reveals the genetic basis of rice resistance to three herbicides. Front Plant Sci. 2024;15:1476829. https://doi.org/10.3389/fpls.2024.1476829
  105. 102. Wang F, Xu Y, Li W, Chen Z, Wang J, Fan F, et al. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing. Crop J. 2021;9(2):305-12. https://doi.org/10.1016/j.cj.2020.06.001
  106. 103. Kong M, He X, Yin Z, Chen X, Zhang Y, Shi Z, et al. Removing harmful pericarp character of weedy Rice as the first step of domestication towards direct-seeding Rice using CRISPR/Cas9-targeted mutagenesis. Agronomy. 2023;13(4):1130. https://doi.org/10.3390/agronomy13041130
  107. 104. Gu XY, Foley ME, Horvath DP, Anderson J V, Feng J, Zhang L, et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics. 2011;189(4):1515-24. https://doi.org/10.1534/genetics.111.131169
  108. 105. Prasad R. Aerobic rice systems. Advances in agronomy. 2011;111:207-47. https://doi.org/10.1016/B978-0-12-387689-8.00003-5

Downloads

Download data is not yet available.