Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Assessment of black soldier fly derived inputs and conventional fertilisers on the growth of Amaranthus aritis in a pot culture experiment

DOI
https://doi.org/10.14719/pst.10922
Submitted
28 July 2025
Published
09-10-2025

Abstract

An in vitro study was conducted to evaluate the effects of various soil amendments on the growth performance and nutrient uptake of Amaranthus aritis. Five treatment conditions were evaluated, including control (Soil), soil + compost, soil + NPK, soil + compost + Black Soldier Fly (BSF) vermiwash and soil + BSF frass (15 %). Growth parameters, including crop weight, root weight, number of leaves, plant height and chlorophyll content were recorded, alongside post-harvest nitrogen, phosphorus and potassium content in both leaf and soil samples. The results revealed a significant improvement in all growth metrics with organic and integrated nutrient management treatments compared to the control. Notably, the soil + BSF frass (15 %) treatment produced the highest crop weight (16.32 g/plant), root weight (2.94 g/plant), leaf number (21/plant), plant height (54.7 cm) and chlorophyll content (4.3 mg/g FW). This treatment also yielded the highest post-harvest leaf nitrogen (4.25 %), phosphorus (0.935 %) and potassium (2.986 %) levels. These findings highlight the potential of BSF-derived amendments, particularly BSF frass, in enhancing plant growth and nutrient content, thereby offering a sustainable alternative to conventional fertilisers for leafy vegetable cultivation.

References

  1. 1. Vanlauwe B, Coyne D, Gockowski J, Hauser S, Huising J, Masso C, et al. Sustainable intensification and the African small holder farmer. Curr Opin Environ Sustain. 2014;8:15–22. https://doi.org/10.1016/j.cosust.2014.06.001
  2. 2. Vanlauwe B, Descheemaeker K, Giller KE, Huising J, Merckx R, Nziguheba G, et al. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil J. 2015;1:491–508. https://doi.org/10.5194/soil-1-491-2015
  3. 3. Musinguzi P, Ebanyat P, Tenywa JS, Basamba TA, Tenywa MM, Mubiru DN. Critical soil organic carbon range for optimal crop response to mineral fertilizer nitrogen on a Ferralsol. Exp Agric. 2016;52:635–53. https://doi.org/10.1017/s0014479715000307
  4. 4. Grigatti M, Boanini E, Cavani L, Ciavatta C, Marzadori C. Phosphorus in digestate-based compost: Chemical speciation and plant-availability. Waste Biomass Valoriz. 2015;6:481–93. https://doi.org/10.1007/s12649-015-9383-2
  5. 5. Baligar VC, Fageria NK, He ZL. Nutrient use efficiency in plants. Commun Soil Sci Plant Anal. 2001;32:921–50. https://doi.org/10.1081/CSS-100104098
  6. 6. Ch’Ng HY, Ahmed OH, Majid NMA. Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Exp Agric. 2016;52:447–65. https://doi.org/10.1080/106567X.2016.1202795
  7. 7. Tittonell P, Vanlauwe B, Corbeels M, Giller KE. Yield gaps, nutrient use efficiencies and response to fertilizers by maize across heterogeneous smallholder farms of western Kenya. Plant Soil. 2008;313:19–37. https://doi.org/10.1007/s11104-008-9767-3
  8. 8. Wortmann CS, Kaizzi KC, Maman N, Cyamweshi A, Dicko M, Garba M, et al. Diagnosis of crop secondary and micro-nutrient deficiencies in sub-Saharan Africa. Nutr Cycl Agroecosyst. 2019;113:127–40. https://doi.org/10.1007/s10705-018-09968-7
  9. 9. Rufino MC, Dury J, Tittonell P, van Wijk MT, Herrero M, Zingore S, et al. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agric Syst. 2011;104:175–90. https://doi.org/10.1016/j.agsy.2010.06.001
  10. 10. Rusinamhodzi L, Corbeels M, Giller KE. Diversity in crop residue management across an intensification gradient in southern Africa: System dynamics and crop productivity. Field Crop Res. 2016;185:79–88. https://doi.org/10.1016/jfcr.2015.10.007
  11. 11. Ndambi OA, Pelster DE, Owino JO, de Buisonjé F, Vellinga T. Manure management practices and policies in sub-Saharan Africa: Implications on manure quality as a fertilizer. Front Sustain Food Syst. 2019;3:1–14. https://doi.org/10.3389/fsufs.2019.00029
  12. 12. Makkar HPS, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol. 2014;197:1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
  13. 13. Oonincx DGAB, Van Broekhoven S, Van Huis A, Van Loon JJA. Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One. 2015;10:1–20. https://doi.org/10.1371/journal.pone.0144601
  14. 14. Nair J, Sekiozoic V, Anda M. Effect of pre-composting on vermicomposting of kitchen waste. Bioresour Technol. 2006;97(16):2091–5. https://doi.org/10.1016/j.biortech.2005.10.022
  15. 15. Zhou G, Jiang X, Wei Y, Wang H, Sun X. Effects of organic-inorganic fertilizer combined with compost on the growth and quality of lettuce (Lactuca sativa L.). Sci Rep. 2019;9:2882. https://doi.org/10.1038/s41598-019-39342-7
  16. 16. Lalander CH, Fidjeland J, Diener S, Eriksson S, Vinnerås B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron Sustain Dev. 2015;35:261–71. https://doi.org/10.1007/s13593-014-0235-4
  17. 17. Oonincx DGAB, van Huis A, van Loon JJA. Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. J Insects Food Feed. 2015;1:131–9. https://doi.org/10.3920/jifff2014.0023
  18. 18. Xiao X, Mazza L, Yu Y, Cai M, Zheng L, Tomberlin JK, et al. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J Environ Manag. 2018;217:668–76. https://doi.org/10.1016/j.jenvman.2018.03.122
  19. 19. Beesigamukama D, Mochoge B, Korir NK, Fiaboe KKM, Nakimbugwe D, Khamis FM. Exploring black soldier fly frass as a novel fertilizer for maize production. Agronomy. 2020;10(12):1956. https://doi.org/10.3390/agronomy10121956
  20. 20. Agustiyani D, Widyastuti SM, Wulandari RA, Maryati Y. Utilization of black soldier fly (BSF) vermiwash to increase the growth of mustard (Brassica juncea). IOP Conf Ser Earth Environ Sci. 2022;1041(1):012014. https://doi.org/10.1088/1755-1315/1041/1/012014
  21. 21. Sable RN, Kamble BM, Patil VD. Effect of organic and inorganic sources of nutrients on growth and yield of Amaranthus (Amaranthus tricolor L.). Int J Curr Microbiol Appl Sci. 2019;8(4):1524–30. https://doi.org/10.20546/ijcmas.2019.804.178
  22. 22. Jeyakumar P, Raj AS. Effect of organic manures and biofertilizers on growth and yield of greens (Amaranthus dubius). South Indian Hortic. 2005;53(1–6):247–52.
  23. 23. Sharma S, Rana VS, Rana NS, Bhardwaj V, Pawar R. Influence of organic amendments on growth, yield, fruiting and nutritional status of kiwifruit vineyard. Ind J Hort. 2022;79(1):56–61. https://doi.org/10.5958/0974-0112.2022.00009.3
  24. 24. Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11(5):591–2. https://doi.org/10.1042/bst0110591
  25. 25. Jackson ML. Soil chemical analysis. New Delhi (India): Prentice Hall of India. 1973.
  26. 26. Bremner JM, Mulvaney CS. Nitrogen-Total. In: Page AL, editor. Methods of Soil Analysis: Part 2. 2nd ed. Madison (WI): ASA and SSSA; 1982. p. 595–624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
  27. 27. Burt R. Soil survey laboratory methods manual. Soil Surv Investig Rep. 2004;4:1–400.
  28. 28. Menino R, Fonseca J, Alves V, Gonçalves F, Marques G. Insect frass and its potential use as organic fertilizer. Agronomy. 2021;11(12):2404. https://doi.org/10.3390/agronomy11122404
  29. 29. Beesigamukama D, Mochoge B, Korir NK, Fiaboe KKM, Nakimbugwe D, Khamis FM, et al. Exploring black soldier fly frass as novel fertilizer for improved growth, yield and nitrogen use efficiency of maize under field conditions. Front Plant Sci. 2020;11:574592. https://doi.org/10.3389/fpls.2020.574592
  30. 30. Mutisya MW, Muthangya M, Nzilu R, Khamis FM, Fiaboe KKM. Liquid bio-fertilizers from black soldier fly frass and compost for enhanced soil and crop productivity. Biomass Convers Biorefin. 2022. https://doi.org/10.1007/s13399-022-02923-z
  31. 31. Thakur S, Sharma AK, Thakur K, Sharma S, Gudeta K, Hashem A, et al. Differential responses to integrated nutrient management of cabbage-capsicum-radish cropping sequence with fertilizers and plant-growth-promoting rhizobacteria. Agronomy. 2023;13(7):1789. https://doi.org/10.3390/agronomy13071789
  32. 32. Taiz L, Zeiger E. Plant physiology. 5th ed. Sunderland (MA): Sinauer Associates. 2010. p. 120–30.
  33. 33. Musyoka MW, Cheseto X, Tanga CM, Subramanian S, Ekesi S. Effect of black soldier fly frass fertilizer on the growth and yield of leafy vegetables. Agronomy. 2019;9(12):719. https://doi.org/10.3390/agronomy9120719
  34. 34. Rathore S, Patidar M, Sharma AK. Effect of organic manures on soil fertility and productivity of leafy vegetables: A review. Int J Chem Stud. 2020;8(1):1740–4. https://doi.org/10.22271/chemi.2020.v8.i3w.9440
  35. 35. Lalander C, Diener S, Magri ME, Zurbrügg C, Lindström A, Vinnerås B. Faecal sludge management with the black soldier fly (Hermetia illucens)-from a hygiene aspect. Sci Total Environ. 2013;458–460:312–8. https://doi.org/10.1016/j.scitotenv.2013.04.033
  36. 36. Sarpong D, Yang J, Du J, Zhang Y, Zhang R. Vermiwash and vermicompost from black soldier fly frass: A sustainable source of biofertilizers for agriculture. J Clean Prod. 2023;397:136480. https://doi.org/10.1016/j.jclepro.2023.136480
  37. 37. Barragán-Fonseca KY, Nurfikari A, van de Zande EM, Wantulla M, van Loon JJA, de Boer W, et al. Insect frass and exuviae to promote plant growth and health. Trends Plant Sci. 2022;27(6):646–54. https://doi.org/10.1016/j.tplants.2022.01.007
  38. 38. Green T. A biochemical analysis of black soldier fly (Hermetia illucens) larval frass plant growth promoting activity. PLoS One. 2023;18(7):e0288913. https://doi.org/10.1371/journal.pone.0288913
  39. 39. Basri NEA, Azman NA, Ahmad IK, Suja F, Jalil NAA, Amrul NF. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods. 2022;11:2664. https://doi.org/10.3390/foods11172664
  40. 40. Kalra A, Patel A, Goel R, Singh HB, Chaudhary V, Rajkumar S. Influence of organic amendments on microbial communities and nutrient availability in soil. Int J Curr Microbiol Appl Sci. 2018;7(6):4050–9. https://doi.org/10.20546/ijcmas.2018.706.477
  41. 41. Lalander C, Diener S, Zurbrügg C, Vinnerås B. Effects of feedstock on larval development and process efficiency in black soldier fly biowaste processing. Waste Manag. 2015;47:236–42. https://doi.org/10.1016/j.wasman.2015.01.016
  42. 42. Chia SY, Tanga CM, Osuga IM, Cheseto X, Ekesi S, Dicke M, et al. Effect of dietary composition on growth performance and nutrient composition of black soldier fly larvae. J Insects Food Feed. 2020;6(3):271–84. https://doi.org/10.3920/JIFF2019.0042
  43. 43. Adiloğlu S, Adiloğlu A. Effect of organic fertilizers on the yield and nutrient content of tomato plant (Lycopersicon esculentum Mill.). Eurasian J Soil Sci. 2019;8(1):57–65. https://doi.org/10.18393/ejss.493345
  44. 44. Azeez JO, Van Averbeke W. Dynamics of soil pH and electrical conductivity with the application of three animal manures. Commun Soil Sci Plant Anal. 2012;43(6):865–74. https://doi.org/10.1080/00103624.2012.653029
  45. 45. Ronga D, Parisi M, Pentangelo A, et al. Use of organic fertilizers for sustainable agriculture. Agronomy. 2019;9(7):379. https://doi.org/10.3390/agronomy9070379
  46. 46. Anyega AO, Korir NK, Beesigamukama D, Changeh GJ, Nkoba K, Subramanian S, et al. Black soldier fly-composted organic fertilizer enhances growth, yield and nutrient quality of three key vegetable crops in Sub-Saharan Africa. Front Plant Sci. 2021;12:680312. https://doi.org/10.3389/fpls.2021.680312
  47. 47. Abd Manan F, Yeoh YK, Chai TT, Wong FC. Unlocking the potential of black soldier fly frass as a sustainable organic fertilizer: A review of recent studies. J Environ Manag. 2024;367:121997. https://doi.org/10.1016/j.jenvman.2024.121997

Downloads

Download data is not yet available.