Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Assessment of genetic divergence in multi-whorled Tuscan jasmine (Jasminum sambac) using microsatellite markers

DOI
https://doi.org/10.14719/pst.11007
Submitted
31 July 2025
Published
04-11-2025 — Updated on 18-11-2025
Versions

Abstract

The genus Jasminum comprises nearly 200 species native to Southeast Asia. Among them, Jasminum sambac, known for its intensely fragrant flowers hold significant value in perfumery, traditional medicine and cultural practices. Due to its wide morphological diversity and adaptability, molecular characterisation is essential to understand its genetic structure, precise identification and management of germplasm. A total of 24 alleles were detected with two alleles per locus indicating moderate allelic polymorphism. The Polymorphic Information Content (PIC) values ranged from 0.30 to 0.40 averaging 0.40 which reflects a moderate level of marker effectiveness and ability to distinguish accessions. Primers JS035, JS042, JS055 and JS079 were recognised as the most effective markers because of their strong polymorphic potential. The effective number of alleles (Ne = 1.808) suggested that alleles were distributed with relatively even frequencies which further indicated that no single allele had dominated. Analysis of Molecular Variance (AMOVA) revealed that 96 % of the total genetic variation was within populations while only 4 % occurred among populations. A PhiPT of 0.035 showed that J. sambac populations were nearly genetically indistinguishable indicating very little differentiation among them. SSR markers have proven highly effective in revealing this genetic unity emphasising their importance in identifying distinct varieties. The revealed genetic diversity provides a strong basis for effective germplasm conservation, management and targeted breeding of superior J. sambac cultivars supporting advancements in horticulture, perfumery and pharmaceutical industries.

References

  1. 1. Green P, Miller D. The genus Jasminum in cultivation. Richmond, Surrey: Royal Botanic Gardens; 2009.
  2. 2. Ganga M, Jawaharlal M, Thamaraiselvi SP. Jasmine. In: Floriculture and ornamental plants. Singapore: Springer; 2021. p. 1-22 https://doi.org/10.1007/978-981-15-3518-5_16
  3. 3. Xu X, Huang H, Lin S, Zhou L, Yi Y, Lin E, et al. Twelve newly assembled jasmine chloroplast genomes: unveiling genomic diversity, phylogenetic relationships and evolutionary patterns among Oleaceae and Jasminum species. BMC Plant Biol. 2024;24(1):331. https://doi.org/10.1186/s12870-024-04995-9
  4. 4. Wang P, Fang J, Lin H, Yang W, Yu J, Hong Y, et al. Genomes of single- and double-petal jasmines (Jasminum sambac) provide insights into their divergence time and structural variations. Plant Biotechnol J. 2022;20(7):1232. https://doi.org/10.1111/pbi.13820
  5. 5. Fang J, Zhou L, Chen Q, Wang J, Zhuang Y, Lin S, et al. Integrated multi-omics analysis unravels the floral scent characteristics and regulation in "Hutou" multi-petal jasmine. Commun Biol. 2025;8(1):256. https://doi.org/10.1038/s42003-025-07685-w
  6. 6. Xu S, Ding Y, Sun J, Zhang Z, Wu Z, Yang T, et al. A high-quality genome assembly of Jasminum sambac provides insight into floral trait formation and Oleaceae genome evolution. Mol Ecol Resour. 2022;22(2):724-39. https://doi.org/10.1111/1755-0998.13497
  7. 7. Deng Y, Sun X, Gu C, Jia X, Liang L, Su J. Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. PLoS One. 2017;12(4):e0176026. https://doi.org/10.1371/journal.pone.0176026
  8. 8. Jajoriya R, Sharma R, Meena VK, Vadithya AS, Singh K, Kumar P, et al. Emergence of molecular marker from RFLP to SNP: a review. Plant Arch. 2025;25(1):62-74.
  9. 9. Al-Miahy FH. DNA-based assessment of genetic diversity of olive genotypes using RAPD molecular markers. Agric Biotechnol J. 2025;17(2):361-80.
  10. 10. Gómez-Rodríguez MV, Beuzon C, González-Plaza JJ, Fernández-Ocaña AM. Identification of an olive (Olea europaea L.) core collection with a new set of SSR markers. Genet Resour Crop Evol. 2021;68(1):117-33. https://doi.org/10.1007/s10722-020-00971-y
  11. 11. Vargas P, Kadereit JW. Molecular fingerprinting evidence (ISSR, inter-simple sequence repeats) for a wild status of Olea europaea L. (Oleaceae) in the Eurosiberian North of the Iberian Peninsula. Flora. 2001;196(2):142-52. https://doi.org/10.1016/S0367-2530(17)30029-4
  12. 12. Mnasri SR, Saddoud OD, Rouz S, Saleh MB, Ferchichi A. Fingerprinting of the main olive cultivars in Tunisia by morphological and AFLP markers. J New Sci. 2017;37.
  13. 13. Partovi R, Iranbakhsh A, Sheidai M, Ebadi M. Population genetic studies in wild olive (Olea cuspidata) by molecular barcodes and SRAP molecular markers. Caryologia. 2020;73(1).
  14. 14. Doyle JJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13-5.
  15. 15. Hawkins TL, McKernan KJ, Jacotot LB, MacKenzie JB, Richardson PM, Lander ES. A magnetic attraction to high-throughput genomics. Science. 1997;276(5320):1887-9. https://doi.org/10.1126/science.276.5320.1887
  16. 16. Peakall RO, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288-95. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  17. 17. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21(9):2128-9. https://doi.org/10.1093/bioinformatics/bti282
  18. 18. Munda S, Saikia RJ, Begum T, Bhandari S, Gogoi A, Sarma N, et al. Evaluation of genetic diversity based on microsatellites and phytochemical markers of core collection of Cymbopogon winterianus Jowitt germplasm. Plants. 2022;11(4):528. https://doi.org/10.3390/plants11040528
  19. 19. Sinha S, Singh D. Role of molecular markers for genetic diversity analysis in floricultural crops - a review. J Ornamental Hortic. 2022;25(1-2):43-8. https://doi.org/10.5958/2249-880X.2022.00007.X
  20. 20. Feng S, He R, Lu J, Jiang M, Shen X, Jiang Y, et al. Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet. 2016;7:113. https://doi.org/10.3389/fgene.2016.00113
  21. 21. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. p. 171-203.
  22. 22. Vieira ML, Santini L, Diniz AL, Munhoz CD. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39:312-28. https://doi.org/10.1590/1678-4685-GMB-2016-0027
  23. 23. Akhtar N, Hafiz IA, Hayat MQ, Potter D, Abbasi NA, Habib U, et al. ISSR-based genetic diversity assessment of genus Jasminum L. (Oleaceae) from Pakistan. Plants. 2021;10(7):1270. https://doi.org/10.3390/plants10071270
  24. 24. Mahmood MA, Hafiz IA, Abbasi NA, Faheem M. Detection of genetic diversity in Jasminum species through RAPD techniques. Int J Agric Biol. 2013;15(3):505-10.
  25. 25. Nirmala KS, Champa BV, Gowda AM. Genetic diversity assessment in Jasminum species using amplified fragment length polymorphism. J Appl Hortic. 2016;18(1):25-9. https://doi.org/10.37855/jah.2016.v18i01.06
  26. 26. Olejnik A, Parkitna K, Kozak B, Florczak S, Matkowski J, Nowosad K. Assessment of the genetic diversity of chrysanthemum cultivars using SSR markers. Agronomy. 2021;11(11):2318. https://doi.org/10.3390/agronomy11112318
  27. 27. Veluru A, Bhat KV, Janakiram T, Prasad KV, Raju DV, Bharadwaj C, et al. Understanding genetic diversity, structure and population differentiation in selected wild species and cultivated Indian and exotic rose varieties based on microsatellite allele frequencies. Indian J Genet Plant Breed. 2019;79(3):583-93. https://doi.org/10.31742/IJGPB.79.3.8
  28. 28. Angst P, Ameline C, Haag CR, Ben-Ami F, Ebert D, Fields PD. Genetic drift shapes the evolution of a highly dynamic metapopulation. Mol Biol Evol. 2022;39(12):msac264. https://doi.org/10.1093/molbev/msac264
  29. 29. Polat Y, Karcı H, Çelik F, Kafkas S, Kafkas NE. SSR markers-based molecular characterization and genetic diversity in pomegranate (Punica granatum L.) genotypes. Genet Resour Crop Evol. 2025:1-4. https://doi.org/10.1007/s10722-025-02336-9
  30. 30. Zhang W, Tian D, Huang X, Xu Y, Mo H, Liu Y, et al. Characterization of flower-bud transcriptome and development of genic SSR markers in Asian lotus (Nelumbo nucifera Gaertn.). PLoS One. 2014;9(11):e112223. https://doi.org/10.1371/journal.pone.0112223
  31. 31. Melapu VK, Joginipelli S, Naidu BV, Darsey J. A comparative phylogenetic evaluation of chloroplast ITS sequences to analyze the bioactivity in medicinal plants: a case study of Clerodendrum (Lamiaceae). Austin J Comput Biol Bioinform. 2015;2(1):1011.
  32. 32. Muriira NG, Muchugi A, Yu A, Xu J, Liu A. Genetic diversity analysis reveals genetic differentiation and strong population structure in Calotropis plants. Sci Rep. 2018;8(1):7832. https://doi.org/10.1038/s41598-018-26275-x
  33. 33. Mekapogu M, Lim SH, Choi YJ, Lee SY, Jung JA. Evaluation of genetic diversity and identification of cultivars in spray-type chrysanthemum based on SSR markers. Genes. 2025;16(1):81. https://doi.org/10.3390/genes16010081

Downloads

Download data is not yet available.