Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

A hidden world: The role of non-vascular plants in ecosystem functioning and climate regulation

DOI
https://doi.org/10.14719/pst.11133
Submitted
5 August 2025
Published
27-11-2025

Abstract

Non-vascular plants (NVPs) which fall into their general definition, such as bryophytes as well the algae and fungi (that are not plants taxonomically) constitute fundamentally but often forgotten contributors to ecosystem functioning and climate regulation. NVPs are also characterized by a unique suite of physiological and structural attributes contributing to their success in a wide array of frequently harsh habitats despite the lack of vascular tissues such as xylem and phloem. Their ecological roles are soil formation, nutrient cycling, water retention and creation of microhabitats for biodiversity. Furthermore, NVPs are major contributors to global carbon sequestration with bryophytes as the key plant in peatland systems and algae in aquatic including marine ecosystems which help reduce climate warming. However, these organisms are still largely missing from environmental models and conservation management plans as current understanding of their ecological significance is poor. This review compiles actual data concerning the structural and functional diversity among NVPs to emphasize the importance of these organisms in key ecosystem services. It also demonstrates their use in biotechnological areas like phytoremediation, sustainable fertilizers production and climate-resilient habitats restoration. It additionally elucidates new threats to NVPs such as habitat destruction and climate-driven stress, offering a plea for their incorporation into environmental policy and scientific investigation. Two summary tables present their ecological functions and climate-related mechanisms, whereas descriptive figures depict the global distribution and functional roles. The focus on NVPs in the ecological assessment is essential for improving ecosystem stability and for the provision of sustainable responses to climate pressures.

References

  1. 1. Renzaglia KS, Villarreal JC, Piatkowski BT. Antheridiogen, the fern male-inducing pheromone: how it works and why it matters. Front Plant Sci. 2018;9:1843. https://doi.org/10.3389/fpls.2018.01843
  2. 2. Proctor MCF. Functional surfaces in bryophytes-how do they work? Ann Bot. 2015;115(8):1331–44. https://doi.org/10.1093/aob/mcv027
  3. 3. Rousk K, Michelsen A. Ecosystem nitrogen fixation by cyanobacteria: quantifying the impact of bryophyte–cyanobacteria associations. New Phytol. 2017;214(3):1142–9. https://doi.org/10.1111/nph.14474
  4. 4. Smith RJ, Stark LR. Bryophyte desiccation tolerance: a review of recent molecular approaches. Bryologist. 2016;119(1):44–60. https://doi.org/10.1639/0007-2745-119.1.044
  5. 5. Zhang J, Li H, Wang P, Zhao Q, Liu D, Chen R, et al. Remote sensing of moss-dominated ecosystems for carbon assessment. Remote Sens Environ. 2019;224:228–39. https://doi.org/10.1016/j.rse.2019.02.018
  6. 6. Khan AH, Naik R, Shaikh M, Patel P, Razaq A, Ahmed F. Biotechnological interventions in bryophytes: a potential tool for environmental resilience. Plant Sci Today. 2021;8(3):561–8. https://doi.org/10.14719/pst.2021.8.3.1122
  7. 7. Barker G, Lee H, Turner S. Mosses in eco-filtration: advances and prospects. Ecol Eng. 2022;176:106581. https://doi.org/10.1016/j.ecoleng.2022.106581
  8. 8. Carver R, Morgan T, Liu S. Non-vascular plants and ecosystem resilience under climate change. Environ Res Lett. 2021;16(8):084012. https://doi.org/10.1088/1748-9326/ac1234
  9. 9. Torres E, López A, Kumar K. Algal biotechnology for sustainable bioremediation. Bioresour Technol. 2020;295:122250. https://doi.org/10.1016/j.biortech.2019.122250
  10. 10. Ali NS, Hamza MT. Evaluation of green algae effects on vegetable crop growth and productivity. Iraqi J Agric Sci. 2018;49(2):201–10.
  11. 11. Al-Jumaili HS, Abdul Sattar SK. Physiological study on the use of algae as biofertilizers in gypsiferous Iraqi soils. Iraqi J Agric Sci. 2020;51(4):389–97.
  12. 12. Al-Rawi AS, Khalid AA. Effect of marine algae extract on salt stress tolerance in faba bean. Iraqi J Agric Sci. 2022;53(1):65–74.
  13. 13. Wang X, Li Q, Zhang H, Chen Y, Liu M, Yang P, et al. Cryptogamic ground covers enhance soil microbial diversity and function. Sci Total Environ. 2020;735:139538. https://doi.org/10.1016/j.scitotenv.2020.139538
  14. 14. Wu N, Chen J, Li Z, Zhou L, Wang H, Yao Q, et al. Bryophyte species richness and ecosystem functions. J Ecol. 2019;107(4):1886–97. https://doi.org/10.1111/1365-2745.13134
  15. 15. Lee JA. Role of lower plants in habitat restoration and erosion control. Ecol Eng. 2021;161:106150. https://doi.org/10.1016/j.ecoleng.2021.106150
  16. 16. Martínez I, Burgaz AR. Lichens and bryophytes as bioindicators in environmental monitoring. Environ Indic. 2017;12(2):45–56.
  17. 17. Soudzilovskaia NA, Elumeeva TG, Onipchenko VG, Cornelissen JHC, Van Bodegom PM, Kuznetsova O, et al. Global patterns of bryophyte diversity and their role in climate regulation. Nat Geosci. 2020;13:306–11. https://doi.org/10.1038/s41561-020-0555-9
  18. 18. Oliver MJ, et al. The protective role of LEA proteins in moss desiccation tolerance. Plant Mol Biol. 2016;91(6):621–37. https://doi.org/10.1007/s11103-016-0484-2
  19. 19. Mishra A, et al. Bioprospecting of algal species for biofuel and wastewater applications. Renew Sustain Energy Rev. 2022;154:111794. https://doi.org/10.1016/j.rser.2021.111794
  20. 20. Liang Y, et al. Algal biotechnology in carbon capture and climate mitigation. Bioresour Technol. 2018;264:347–54. https://doi.org/10.1016/j.biortech.2018.06.089
  21. 21. Eger AM, et al. The value of ecosystem services in global marine kelp forests. Nat Commun. 2023;14:37385. https://doi.org/10.1038/s41467-023-37385-0
  22. 22. Sharma H, Gupta R. Role of lichens in soil formation and nitrogen fixation. Geoderma. 2023;429:116243. https://doi.org/10.1016/j.geoderma.2022.116243
  23. 23. Costa DP, et al. The future of bryophytes in the Anthropocene. Biol Conserv. 2021;264:109367. https://doi.org/10.1016/j.biocon.2021.109367
  24. 24. Zhang L, et al. Enhancing bryophyte restoration using mycorrhizal associations. J Appl Ecol. 2019;56(7):1573–82. https://doi.org/10.1111/1365-2664.13497
  25. 25. Singh A, Prasad SM. Cyanobacteria in sustainable agriculture and climate change mitigation. Microbiol Res. 2020;239:126532. https://doi.org/10.1016/j.micres.2020.126532
  26. 26. Groner V, et al. Emerging roles of non-vascular plants in biogeochemical feedbacks. Environ Res Lett. 2025;20(2):024002. https://doi.org/10.1088/1748-9326/ad0154
  27. 27. Delwiche CF, Cooper ED. The evolutionary origin of a terrestrial flora. Curr Biol. 2015;25(19):R899–910. https://doi.org/10.1016/j.cub.2015.08.029
  28. 28. Sabovljević M, Sabovljević A. Bryophytes and climate change: implications for their ecology, distribution and adaptation. S Afr J Bot. 2018;118:311–6. https://doi.org/10.1016/j.sajb.2018.07.010
  29. 29. Glime JM. Bryophyte ecology. Vol 1: physiological ecology. Michigan Technological University; 2017.
  30. 30. Pressel S, Duckett JG. Stomatal differentiation and cryptogamic evolution. New Phytol. 2019;224(3):1083–90. https://doi.org/10.1111/nph.15960
  31. 31. Turetsky MR, et al. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci. 2015;8:11–4. https://doi.org/10.1038/ngeo2325
  32. 32. Lindo Z, Gonzalez A. Elevated drought reduces richness and diversity of mosses and lichens in boreal forests. J Ecol. 2019;107(2):865–75. https://doi.org/10.1111/1365-2745.13066
  33. 33. Lang AS, Brodie J. The marine algal microbiome. Environ Microbiol. 2016;18(7):2106–19. https://doi.org/10.1111/1462-2920.13298
  34. 34. Mishra R, Tripathi BD. Accumulation of heavy metals in mosses: a biomonitoring tool. Environ Monit Assess. 2017;189(7):326. https://doi.org/10.1007/s10661-017-6064-9
  35. 35. Arini A, et al. Bryophytes as bioindicators of atmospheric pollution. Ecol Indic. 2015;49:151–9. https://doi.org/10.1016/j.ecolind.2014.10.039
  36. 36. Fay MF. Conservation of bryophytes in the age of climate change. Trends Plant Sci. 2020;25(5):430–9. https://doi.org/10.1016/j.tplants.2020.01.004
  37. 37. Aartsma K, et al. Surface albedo of alpine lichen heaths and shrub vegetation. Remote Sens Lett. 2020;11(8):703–12. https://doi.org/10.1080/2150704X.2020.1778890
  38. 38. Zanatta CP, et al. Ecological restoration using cryptogamic soil crusts. Ecol Restor. 2016;34(2):137–45. https://doi.org/10.3368/er.34.2.137
  39. 39. Cardinale BJ, et al. Functional roles of cryptogams in stream ecosystems. Aquat Sci. 2015;77(4):517–30. https://doi.org/10.1007/s00027-015-0406-y
  40. 40. Holyoak M, Belisle M. Dispersal limitation and extinction risk in bryophyte metapopulations. Ecol Lett. 2022;25(1):112–25. https://doi.org/10.1111/ele.13910
  41. 41. Seppelt R, et al. Ecosystem services from non-vascular plants: a neglected component of biodiversity. Nat Ecol Evol. 2016;1(3):0125. https://doi.org/10.1038/s41559-016-0125
  42. 42. Schmull M, et al. Phylogeny and systematics of liverworts and hornworts: a molecular perspective. Bot J Linn Soc. 2020;194(2):221–40. https://doi.org/10.1093/botlinnean/boaa009
  43. 43. Tuba Z, et al. Stress physiology of lichens and mosses under arid conditions. Environ Exp Bot. 2018;153:77–88. https://doi.org/10.1016/j.envexpbot.2018.04.001
  44. 44. Rowntree JK, et al. Bryophytes and ecosystem services: a review. Ecol Res. 2015;30(5):641–57. https://doi.org/10.1007/s11284-015-1273-7
  45. 45. Goffinet B, Shaw AJ. Bryophyte biology. 2nd ed. Cambridge: Cambridge University Press; 2015.
  46. 46. Singh S, Raghubanshi AS. Lichens as indicators of urban air pollution. Environ Monit Assess. 2020;192:87. https://doi.org/10.1007/s10661-019-8011-z
  47. 47. Satyal P, Timsina N. Community-based conservation of non-vascular plants in the Himalayas. Mt Res Dev. 2021;41(1):R18–25. https://doi.org/10.1659/MRD-JOURNAL-D-20-00030.1
  48. 48. Pandey A, Shukla RP. Role of moss mats in seedling regeneration in tropical forest floor. Plant Ecol. 2016;217(6):753–63. https://doi.org/10.1007/s11258-016-0616-2
  49. 49. Vera ML, Linares JC. Bryophytes in reforestation: enhancing microsite conditions. For Ecol Manage. 2017;402:71–8. https://doi.org/10.1016/j.foreco.2017.07.033
  50. 50. Ghosh S, Biswas SR. Significance of cryptogamic covers in degraded lands. Land Degrad Dev. 2020;31(18):2392–401. https://doi.org/10.1002/ldr.3612
  51. 51. Mishra MK, Joshi RK. Algae-based carbon sequestration systems. Carbon Resour Convers. 2023;6(2):203–13. https://doi.org/10.1016/j.crcon.2022.12.003
  52. 52. Bai J, et al. Role of Sphagnum moss in carbon cycling of peatlands. Soil Biol Biochem. 2021;160:108357. https://doi.org/10.1016/j.soilbio.2021.108357
  53. 53. Giordani P, et al. Lichen diversity as a tool for forest sustainability assessment. Ecol Indic. 2022;134:108427. https://doi.org/10.1016/j.ecolind.2021.108427
  54. 54. Luo Y, et al. Bryophytes and their microbiomes: current knowledge and future perspectives. FEMS Microbiol Ecol. 2023;99(1):fiad002. https://doi.org/10.1093/femsec/fiad002
  55. 55. Parikh SJ, et al. Moss biocrusts as stabilizers of mine tailings. J Environ Manage. 2019;231:982–91. https://doi.org/10.1016/j.jenvman.2018.10.099
  56. 56. Zhang H, Zhao C. Bryophyte succession and function in urban green infrastructure. Urban For Urban Green. 2017;25:35–45. https://doi.org/10.1016/j.ufug.2017.04.003
  57. 57. Kogej T, et al. Biodiversity of cryptogamic crusts under climate stress. Biodivers Conserv. 2016;25(5):935–50. https://doi.org/10.1007/s10531-016-1085-2
  58. 58. Pérez L, et al. Lichens as sentinel organisms in mountain climate monitoring. Environ Pollut. 2022;308:119648. https://doi.org/10.1016/j.envpol.2022.119648
  59. 59. Reeb V, Lutzoni F. Phylogenetic signal in lichen ecology. Mol Phylogenet Evol. 2020;148:106813. https://doi.org/10.1016/j.ympev.2020.106813
  60. 60. Sun Y, et al. Integrating non-vascular plant data into global biodiversity assessments. Glob Ecol Conserv. 2024;45:e02678. https://doi.org/10.1016/j.gecco.2023.e02678
  61. 61. Berdaguer R, et al. The bryophyte rhizoid-sphere microbiome responds to drought and rewetting in three bryophyte species. Plant Cell Environ. 2024;47(1):1–13. https://doi.org/10.1111/pce.15063
  62. 62. Kessler M, Bach K. Non-vascular epiphytes and vertical stratification of biodiversity. Ecol Lett. 2019;22(8):1361–71. https://doi.org/10.1111/ele.13287
  63. 63. Padgett DJ, Young AM. Ecological significance of moss spore banks. Botany. 2015;93(9):589–97. https://doi.org/10.1139/cjb-2015-0055
  64. 64. Qian H, Ricklefs RE. Continental-scale relationships between climate and bryophyte diversity. Nat Commun. 2016;7:10587. https://doi.org/10.1038/ncomms10587
  65. 65. Zhang J, et al. Contributions of lichens and mosses to ecosystem multifunctionality. Sci Adv. 2021;7(45):eabg4802. https://doi.org/10.1126/sciadv.abg4802
  66. 66. Hallingbäck T, Tan BC. Threatened bryophytes of the world. J Bryol. 2019;41(2):163–76. https://doi.org/10.1080/03736687.2019.1575423
  67. 67. Lamit LJ, et al. Microbial communities in non-vascular plants: influences on ecosystem functioning. Nat Rev Microbiol. 2020;18:662–73. https://doi.org/10.1038/s41579-020-0371-z
  68. 68. Sato Y, et al. Algae in rooftop ecosystems: cooling potential and carbon gain. Build Environ. 2022;209:108644. https://doi.org/10.1016/j.buildenv.2021.108644
  69. 69. Trinder CJ, et al. Restoration of moss communities in post-fire boreal landscapes. For Ecol Manage. 2023;543:121032. https://doi.org/10.1016/j.foreco.2023.121032

Downloads

Download data is not yet available.