Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Nanotechnology applications in seed germination: Evolutionary and systematic perspectives

DOI
https://doi.org/10.14719/pst.11141
Submitted
6 August 2025
Published
11-11-2025 — Updated on 27-11-2025
Versions

Abstract

Agriculture faces challenges from limited arable land, climate change and population growth, threatening food security and requiring advanced solutions. Nanotechnology, including quantum dots and metal oxide nanoparticles, has shown promise in enhancing seed germination, seedling vigor and crop productivity by modulating key physiological and biochemical processes, thus supporting sustainable food production under these constraints. The integration of nanotechnology into agriculture holds significant promise for enhancing seed germination, crop yield and sustainable food production. Amid challenges such as shrinking arable land, climate variability and growing population demands, nanomaterials-particularly quantum dots (QDs) and metal oxide nanoparticles-have emerged as potent agents in improving seed physiological and biochemical traits. This review comprehensively examines the influence of various nanoparticles (e.g. CuO, Fe₂O₃, TiO₂, nanosilica and CNTs) on germination parameters across diverse plant species, highlighting their potential to penetrate seed coats, enhance water and nutrient uptake and activate key enzymes such as catalase, amylase and dehydrogenase. Additionally, we address the dual role of QDs in promoting early growth stages while acknowledging possible phytotoxic effects at higher concentrations. The review further examines antioxidant responses and the regulation of secondary metabolites in plants and it also assesses the biosafety of nanomaterials using model soil organisms such as earthworms. The review also explores antioxidant and secondary metabolite responses and evaluates biosafety using model soil organisms like earthworms. Overall, the study underscores the need for plant systematics-informed research on nanoparticle- plant interactions to optimize their safe and targeted application in seed technology and sustainable agriculture.

References

  1. 1. Rodrigues LA, Alves CZ, Rego CH, Silva TR, Silva JB. Humic acid on germination and vigor of corn seeds1. Rev Caatinga. 2017;30:149-54. https://doi.org/10.1590/1983-21252017v30n116rc
  2. 2. Kha LQ, Vinh NQ, Chau NH, Bao PV. The efficacy of micro-nano particles across NPK doses and densities on maize growth and yield in Vietnam. Life Sci Agric. 2019;33-39. https://doi.org/10.31276/VJSTE.61(3).33-39
  3. 3. Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res. 2015;17(2):92. https://doi.org/10.1007/s11051-015-2907-7
  4. 4. Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y, et al. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr Rev Food Sci Food Saf. 2019;18(1):305-28. https://doi.org/10.1111/1541-4337.12414
  5. 5. Nakao Y, Asea G, Yoshino M, Kojima N, Hanada H, Miyamoto K, et al. Development of hydropriming techniques for sowing seeds of upland rice in Uganda. Am J Plant Sci. 2018;9(11):2170-82. https://doi.org/10.4236/ajps.2018.911157
  6. 6. Forti C, Shankar A, Singh A, Balestrazzi A, Prasad V, Macovei A. Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes. 2020;11(3):242. https://doi.org/10.3390/genes11030242
  7. 7. Heydecker W, Gibbins BM. Attempts to synchronise seed germination. In Symposium on the Timing of Field vegetable Production. 1977. pp. 79-92. https://doi.org/10.17660/ActaHortic.1978.72.8
  8. 8. Jisha KC, Puthur JT. Seed halo priming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. J Crop Sci Biotechnol. 2014;17(4):209-19. https://doi.org/10.1007/s12892-014-0077-2
  9. 9. Afzal I, Basra SM, Shahid M, Farooq M, Saleem M. Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Sci Technol. 2008;36(2):497-503. https://doi.org/10.15258/sst.2008.36.2.26
  10. 10. Nawaz A, Amjad M, Pervez MA, Afzal I. Effect of halo priming on germination and seedling vigor of tomato. Afr J Agric Res. 2011;6(15):3551-59. https://doi.org/10.5897/AJAR11.064
  11. 11. Mielezrski F, Bennett MA, Grass Baugh EM, Evans AF. Radish seed priming treatments. Seed Technol. 2016;37(1):55-63.
  12. 12. Caseiro R, Bennett MA, Marcos-Filho J. Comparison of three priming techniques for onion seed lots differing in initial seed quality. Seed Sci Technol. 2004;32(2):365-75. https://doi.org/10.15258/sst.2004.32.2.09
  13. 13. Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK. Seed enhancements. Seed Sci Res. 1998;8(2):245-56. https://doi.org/10.1017/S0960258500004141
  14. 14. Conway KE, Mereddy R, Kahn BA, Wu Y, Hallgren SW, Wu L. Beneficial effects of solid matrix chemo-priming in okra. Plant Dis. 2001;85(5):535-37. https://doi.org/10.1094/PDIS.2001.85.5.535
  15. 15. Ozden E, Ozdamar C, Demir I. Radicle emergence test estimates predictions of percentage normal seedlings in standard germination tests of aubergine (Solanum melongena L.) seed lots. Not Bot Horti Agrobo Cluj Napoca. 2018;46(1):177-82. https://doi.org/10.15835/nbha46110871
  16. 16. Madsen MD, Svejcar L, Radke J, Hulet A. Inducing rapid seed germination of native cool season grasses with solid matrix priming and seed extrusion technology. PLoS One. 2018;13(10):e0204380. https://doi.org/10.1371/journal.pone.0204380
  17. 17. Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiol Ecol. 2016;92(8):fiw112. https://doi.org/10.1093/femsec/fiw112
  18. 18. Singh Y, Kaushal S, Sodhi RS. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv. 2020;2(9):3972-82. https://doi.org/10.1039/D0NA00357C
  19. 19. Song G, Li X, Hui R. Effect of biological soil crusts on seed germination and growth of an exotic and two native plant species in an arid ecosystem. PLoS One. 2017;12(10):e0185839. https://doi.org/10.1371/journal.pone.0185839
  20. 20. Thornton JM, Powell AA. Short-term aerated hydration for the improvement of seed quality in Brassica oleracea L. Seed Sci Res. 1992;2(1):41-9. https://doi.org/10.1017/S0960258500001094
  21. 21. Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526
  22. 22. Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:1357. https://doi.org/10.3389/fpls.2019.01357
  23. 23. Pedrini S, Merritt DJ, Stevens J, Dixon K. Seed coating: Science or marketing spin. Trends Plant Sci. 2017;22(2):106-16. https://doi.org/10.1016/j.tplants.2016.11.002
  24. 24. Pedrini S. Seed enhancement research for improving ecological restoration. Curtin University: Bently, Australia. 2018.
  25. 25. Peske FB, Novembre AD. Pearl millet seed pelleting. Rev Bras Sementes. 2011;33:352-62. https://doi.org/10.1590/S0101-31222011000200018
  26. 26. Johnson EA. Buried seed populations in the subarctic forest east of Great Slave Lake, Northwest Territories. Can J Bot. 1975;53(24):2933-41. https://doi.org/10.1139/b75-323
  27. 27. Kavitha R, Umesha S, Shetty HS. Does dependent impact of dominant seed borne fungi on seed germination and seedling vigour of cotton seeds. Seed Res. 2005;33(2):187.
  28. 28. Ponnuswamy AS, Vijayalakshmi V. Effect of seed fortification with bio inoculants, nutrients and growth regulators on seed germination and seedling vigour of tomato (Lycopersicum esculentum), brinjal (Solanum melongena) and chilli (Capsicum annum). Madras Agric J. 2011; 98(7-9):251-52.
  29. 29. Raja K. Seed treatments for vigorous seedling establishment and improved seed yield of blackgram under rice fallow condition. Legume Res. 2018; 41(1):120-25. https://doi.org/10.18805/LR-3689
  30. 30. Finch-Savage WE. The effects of fluid drilling germinating seeds on the emergence and subsequent growth of carrots in the field. J Hort Sci. 1984;59(3):411-7. https://doi.org/10.1080/00221589.1984.11515213
  31. 31. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, et al. Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol. 2012;12(3):2212-20. https://doi.org/10.1166/jnn.2012.5775
  32. 32. Liu M, Li M, Liu K, Sui N. Effects of drought stress on seed germination and seedling growth of different maize varieties. J Agric Sci. 2015;7(5):231. https://doi.org/10.5539/jas.v7n5p231
  33. 33. Zhang M, Gao B, Chen J, Li Y. Effects of graphene on seed germination and seedling growth. J Nanopart Res. 2015;17(2):78. https://doi.org/10.1007/s1151-015-2885-9
  34. 34. Ren R, Li D, Zhen C, Chen D, Chen X. Specific roles of Os4BGlu10, Os6BGlu24 and Os9BGlu33 in seed germination, root elongation and drought tolerance in rice. Planta. 2019;249(6):1851-61. https://doi.org/10.1007/s00425-019-03125-2
  35. 35. Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice. 2018;11(1):50. https://doi.org/10.1186/s12284-018-0244-z
  36. 36. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. Uptake of FITC labelled silica nanoparticles and quantum dots by rice seedlings: Effects on seed germination and their potential as bio labels for plants. J Fluoresc. 2011;21(6):2057-68. https://doi.org/10.1007/s10895-011-0904-5
  37. 37. Mir AR, Pichtel J, Hayat S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals. 2021;34(4):737-59. https://doi.org/10.1007/s10534-021-00306-z
  38. 38. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. Effect of copper oxide Nano particle on seed germination of selected crops. J Agric Sci Technol A. 2012; 2(6A):815.
  39. 39. Wang X, Sun W, Ma X. Differential impacts of copper oxide nanoparticles and Copper (II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environ Pollut. 2019;252:967-73. https://doi.org/10.1016/j.envpol.2019.06.052
  40. 40. Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Rev Agric Sci. 2015;3:1-24. https://doi.org/10.7831/ras.3.1
  41. 41. Jaya Mugundha P, Lakshmanan A, Rajkishore SK, Raja K. Bioefficacy of Fe2O3 quantum dots on enhancing seed germination and seedling vigour in black gram (Vigna mungo). The Pharma Innov. 2022;11(8):1539-1542.
  42. 42. Szőllősi R, Molnár Á, Kondak S, Kolbert Z. Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxicity. Plants. 2020;9(12):1745. https://doi.org/10.3390/plants9121745
  43. 43. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-27. https://doi.org/10.1021/nn900887m
  44. 44. Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC. Green synthesis of Nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol. 2016;233:84-94. https://doi.org/10.1016/j.jbiotec.2016.07.010
  45. 45. Aghdam MT, Mohammadi H, Ghorbanpour M. Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot. 2016;39(1):139-46. https://doi.org/10.1007/s40415-015-0227-x
  46. 46. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012;35:64-70. https://doi.org/10.1016/j.cropro.2012.01.007
  47. 47. Zhang HY, Niu HJ, Wang YM, Wang C, Bai X, Wang S, et al. A simple method to prepare carbon nanotubes from sunflower seed hulls and sago and their application in super capacitor. Pigment Resin Technol. 2015;44(1):7-12. https://doi.org/10.1108/PRT-10-2013-0090
  48. 48. Gokak IB, Taranath TC. Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. Exposed to zinc and zinc nanoparticles. Int J Environ Sci. 2015;5(4):840-47.
  49. 49. Shankramma K, Yallappa S, Shivanna MB, Manjanna J. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. 2016;6(7):983-90. https://doi.org/10.1007/s13204-015-0510-y
  50. 50. Korishettar P, Vasudevan SN, Shakuntala NM, Doddagoudar SR, Hiregoudar S, Kisan B. Seed polymer coating with Zn and Fe nanoparticles: An innovative seed quality enhancement technique in pigeon pea. J Appl Nat Sci. 2016;8(1):445. https://doi.org/10.31018/jans.v8i1.814
  51. 51. Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL, et al. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol. 2015;49(1):626-32. https://doi.org/10.1021/es5050562
  52. 52. Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, et al. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale. 2021;13(4):2266-85. https://doi.org/10.1039/D0NR08478F
  53. 53. Doshi P, Scholtz V, Khun J, Thonová L, Cai X, Šerá B. Non-thermal plasma and hydropriming combined treatment of cucumber and broccoli Sseds and the effects on germination and seedling characteristics after short-term storage. Appl Sci. 2025;15(15):8404. https://doi.org/10.3390/app15158404
  54. 54. Xie Y, Wei L, Ji Y, Li S. Seed treatment with iron chlorine E6 enhances germination and seedling growth of rice. Agriculture. 2022;12(2):218. https://doi.org/10.3390/agriculture12020218
  55. 55. Vijayalakshmi V, Sathish S, Umarani R. Effect of Xanthan gum seed coating on seed germination and seedling vigour of finger millet (Eleusine coracana L.). Environ Conserv J. 2024;25(1):206-10. https://doi.org/10.36953/ECJ.24342669
  56. 56. Gunjan B, Zaidi MG, Sandeep A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol. 2014;2(3):1-6.
  57. 57. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nano priming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 2017;7(1):8263. https://doi.org/10.1038/s41598-017-08669-5
  58. 58. Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J. Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot. 2017;137:58-72. https://doi.org/10.1016/j.envexpbot.2017.02.007
  59. 59. Mahendra KR, Dhillon MK, Lakshmi KI, Gowtham KV, Mukri G, Tanwar AK. Nutritional, anti- nutritional and enzymatic basis of antibiosis in maize lines against spotted stem borer, Chilo partellus (Swinhoe). Arthropod Plant Interact. 2025;19(2):38. https://doi.org/10.1007/s11829-025-10146-0
  60. 60. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI. Effect of nanoparticles on biological contamination of in vitro cultures and organ genic regeneration of banana. Aust J Crop Sci. 2014;8(4):612-24.
  61. 61. Medina-Pérez G, Fernández-Luqueño F, Campos-Montiel RG, López-Valdez F, Vázquez-Núñez E, Pérez-Hernández H, et al. Effects of nanoparticles on plants, earthworms and microorganisms. In: López-Valdez F, Fernández-Luqueño F, editors. Agricultural Nano biotechnology: Modern agriculture for a sustainable future. Cham: Springer. 2018. p. 161-81. https://doi.org/10.1007/978-3-319-96719-6_9
  62. 62. Yirsaw BD, Megharaj M, Chen Z, Naidu R. Environmental application and ecological significance of nano-zero valent iron. J Environ Sci. 2016;44:88-98. https://doi.org/10.1016/j.jes.2015.07.016

Downloads

Download data is not yet available.