Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Insecticidal activity of Cashew Nut Shell Liquid (CNSL) against pulse beetle (Callosobruchus maculatus) in green gram (Vigna radiata) seeds

DOI
https://doi.org/10.14719/pst.11178
Submitted
7 August 2025
Published
22-09-2025

Abstract

Stored pulses are highly vulnerable to infestation by pulse beetles, particularly Callosobruchus maculatus, leading to significant postharvest losses. The insecticidal potential of Cashew Nut Shell Liquid (CNSL) against C. maculatus was evaluated using time-based toxicity assessments. CNSL was extracted using acetone and chemically profiled through Gas Chromatography-Mass Spectrometry (GC-MS). Major constituents included cardanol, gallic acid, oleic acid and 2-deoxy-D-glucose, compounds known for their neurotoxic, oxidative and metabolic-disrupting properties. Adult beetles were exposed to CNSL treated green gram seeds and mortality was recorded at 24, 48, 72, 96 and 120 hr post-treatment. Results revealed a strong time-dependent toxicity of CNSL, with LC₅₀ decreasing from 12.56 g/kg at 24 hr to just 0.62 g/kg at 120 hr. The regression models showed high reliability (X² = 0.966 - 1.000), confirming the dose-response relationship. Thus, the study demonstrates that CNSL is an effective botanical insecticide with increasing efficacy over time. Its multi-target mode of action and low-dose effectiveness highlight its potential as a sustainable solution for managing pulse beetles in pulse storage system.

References

  1. 1. Berhe M, Subramanyam B, Chichaybelu M, Demissie G, Abay F, Harvey J. Post-harvest insect pests and their management practices for major food and export crops in East Africa: an Ethiopian case study. Insects. 2022;13(11). https://doi.org/10.3390/insects13111068
  2. 2. Meena A, Meena R, Laichattiwar M. Varietal susceptibility and assessment of losses caused by pulse beetle Callosobruchus chinensis (L.) in green gram under laboratory conditions. J Pure Appl Microbiol. 2017;11(1):259–63. https://doi.org/10.22207/JPAM.11.1.33
  3. 3. Naik SJS, Lamichaney A, Bohra A, Mishra R, Singh F, Datta D, et al. Identification of tolerant genotypes against pulse beetle as a source to reduce post-harvest losses in pigeonpea (Cajanus cajan (L.) Millisp.). Legume Res; 2019.
  4. 4. Agarwal A. Protection of pulses from pulse beetles using indigenous methods during storage. Nutr Food Technol Open Access. 2017;3(2). https://doi.org/10.16966/2470-6086.e102
  5. 5. Hajam YA, Kumar R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: a review. Heliyon. 2022;8(1):e08703. https://doi.org/10.1016/j.heliyon.2021.e08703
  6. 6. Jaiswal DK, Raju SVS, Choudhary S, Kumar S, Vani VM. Bioefficacy of physical, chemical and bio-pesticide seed treatment against pulse beetle (Callosobruchus chinensis) in chickpea. Indian J Agric Res. 2024. https://doi.org/10.18805/IJARe.A-6266
  7. 7. Acharya S, Shrestha S, Ojha A. Efficacy of botanical dust against pulse beetle of black gram (Vigna mungo L.). Trop Agrobiodivers. 2023;4:68–73. https://doi.org/10.26480/trab.02.2023.68.73
  8. 8. Chauhan N, Kashyap U, Dolma S, Reddy SGE. Chemical composition, insecticidal, persistence and detoxification enzyme inhibition activities of essential oil of Artemisia maritima against the pulse beetle. Molecules. 2022;27:1547. https://doi.org/10.3390/molecules27051547
  9. 9. Bande L, Gusnawaty H, Trisulpa L. Botanical pesticides effect from shells of bean’s cashew nut on biological agents of Trichoderma sp. and Gliocladium sp. In: Proceedings of the IOP Conference Series: Earth and Environmental Science; 2018 Sep 13–14; Makassar, Indonesia. Bristol (UK): IOP Publishing; 2018. p. 012047. https://doi.org/10.1088/1755-1315/122/1/012047
  10. 10. Adedire CO, Obembe OM, Akinkurolere RO, Oduleye SO. Response of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) to extracts of cashew kernels. J Plant Dis Prot. 2011;118:75–9. https://doi.org/10.1007/BF03356385
  11. 11. Oliveira NN, Mothé CG, Mothé MG, de Oliveira LG. Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J Food Sci Technol. 2020;57:12–21. https://doi.org/10.1007/s13197-019-04051-7
  12. 12. Raja K, Sivasubramaniam K, Geetha R. Comparative performance of cashew nut shell liquid (CNSL) for pulse beetle control in pulse seed (Coleoptera: Bruchidae). Entomol Gen. 2013;34:197–205. https://doi.org/10.1127/entom.gen/34/2013/197
  13. 13. Subhakara RN, Srinivas RA, Adharvana CM. Synthesis and antibacterial activity of urea and thiourea derivatives of anacardic acid mixture isolated from a natural product cashew nut shell liquid (CNSL). Int J Org Chem. 2012;2012:1–7. https://doi.org/10.2174/157017812800233660
  14. 14. Schneider BUC, Meza A, Beatriz A, Pesarini JR, Carvalho PC, Mauro MO, et al. Cardanol: toxicogenetic assessment and its effects when combined with cyclophosphamide. Genet Mol Biol. 2016;39:279–89. https://doi.org/10.1590/1678-4685-gmb-2015-0170
  15. 15. Keita S, Zuharah WF. Potential toxicity of cashew nut shell liquid (CNSL) on adult Bactrocera dorsalis (Hendel) (Tephritidae). J Taibah Univ Sci. 2023;17(1):2189887. https://doi.org/10.1080/16583655.2023.2189887
  16. 16. Farag MA, Sharaf El-Din MG, Selim MA-F, Owis AI, Abouzid SF. Mass spectrometry-based metabolites profiling of nutrients and anti-nutrients in major legume sprouts. Food Biosci. 2021;39:100800. https://doi.org/10.1016/j.fbio.2020.100800
  17. 17. Akhtar I, Das M. Nutritional content and amino acid profile of edible insects (Lethocerus indicus, Dytiscus marginalis and Odontotermes feae) consumed by ethnic communities of Assam, India. J Food Sci Technol. 2025:1–10. https://doi.org/10.1007/s13197-025-06358-0
  18. 18. Azadnia R, Rajabipour A, Jamshidi B, Omid M. New approach for rapid estimation of leaf nitrogen, phosphorus and potassium contents in apple trees using Vis/NIR spectroscopy based on wavelength selection coupled with machine learning. Comput Electron Agric. 2023;207:107746. https://doi.org/10.1016/j.compag.2023.107746
  19. 19. Wiyantoko B, Maulidatunnisa V, Purbaningtias TE. Method performance of K₂O analysis in flake potassium fertilizer using flame photometer. In: Proceedings of the 3rd International Conference on Chemistry, Chemical Process and Engineering; 2020 Sep 30; Yogyakarta, Indonesia. Melville (NY): AIP Publishing; 2021. p. 030008.
  20. 20. Xie Y, Bodnaryk R, Fields P. A rapid and simple flour-disk bioassay for testing substances active against stored-product insects. Can Entomol. 1996;128(5):865–75. https://doi.org/10.4039/Ent128865-5
  21. 21. Yu N, Nachman RJ, Smagghe G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen Comp Endocrinol. 2013;188:196–203. https://doi.org/10.1016/j.ygcen.2013.03.006
  22. 22. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630–3. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  23. 23. Abbott W. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7. https://doi.org/10.1093/jee/18.2.265a
  24. 24. Finney D. The estimation of the ED₅₀ for a logistic response curve. Sankhya Indian J Stat. 1952:121–36.
  25. 25. Herranz CP, García RC, García AS. Statistical analysis with SPSS for chemical engineering. In: Introduction to software for chemical engineers. CRC Press; 2025. p. 273–91. https://doi.org/10.1201/9781003472360-11
  26. 26. Astriani D, Dinarto W, Jatmiko A. CNSL concentration and natural dyes effects in formulation of botanical pesticide on Sitophilus zeamais and maize seed quality. Sustainable Environment Agricultural Science. 2020;4(1):1–9. https://doi.org/10.22225/seas.4.1.1505.1-9
  27. 27. Babatunde SF, Musa AK, Suleiman AF, Gambari LI. Effect of cashew (Anacardium occidentale) nut shell stored and fresh extracts on cowpea bruchid, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Acta Fytotech Zootech. 2021;24(2). https://doi.org/10.15414/afz.2021.24.02.124-128
  28. 28. Echendu TNC. Ginger, cashew and neem as surface protectants of cowpeas against infestation and damage by Callosobruchus maculatus (F.). Trop Sci. 1991;31:209–21.
  29. 29. Farias DF, Cavalheiro MG, Viana SM, De Lima GP, Da Rocha-Bezerra LCB, Ricardo NM, et al. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti. J Am Mosq Control Assoc. 2009;25(3):386–9. https://doi.org/10.2987/08-5851.1
  30. 30. Raja K. Comparative performance on insecticidal and oviposition deterrence of cashew nut shell liquid (CNSL) on bruchids (Callosobruchus chinensis L.) in cowpea (Vigna unguiculata (L.) Walp.) seed. J Biopest. 2015;8(2):147–53. https://doi.org/10.57182/jbiopestic.8.2.147-153
  31. 31. Kpoviessi DA, Chougourou DC, Bokononganta AH, Fassinou-Hotegni NV, Dossou J. Bioefficacy of powdery formulations based on kaolin powder and cashew (Anacardium occidentale L.) balms to control Callosobruchus maculatus F. (Coleoptera: Chrysomelidae: Bruchidae) in stored cowpea (Vigna unguiculata L.). Int J Biol Chem Sci. 2017;11(4):1424–36. https://doi.org/10.4314/ijbcs.v11i4.3
  32. 32. Raja K. Toxicity and oviposition deterrency of cashew nut shell liquid (CNSL) on pulse beetle in blackgram seeds. Seed Sci Technol. 2008;36(1):210. https://doi.org/10.15258/sst.2008.36.1.24
  33. 33. Buxton T, Owusu E, Kim CS. Bioactivity of cardanol against the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Int J Trop Insect Sci. 2018;38(4):353-61. https://doi.org/10.1017/S1742758418000176
  34. 34. Andayanie W, Nuriana W, Ermawaty N. Bioactive compounds and their antifeedant activity in the cashew nut (Anacardium occidentale L.) shell extract against Bemisia tabaci (Gennadius, 1889) (Hemiptera: Aleyrodidae). Acta Agric Slov. 2019;113(2):281. https://doi.org/10.14720/aas.2019.113.2.9
  35. 35. Crispim B, Luz S, Merey F, Schibichewski M, Arruda E, Lomonaco D, et al. Development of sustainable multifunctional larvicides from cashew nut shell liquid (tCNSL) for Aedes aegypti control. Waste Biomass Valor. 2025:1-15. https://doi.org/10.1007/s12649-025-03178-3
  36. 36. Kala S, Sogan N, Verma, Naik S, Agarwal A, Patanjali PK,et al. Nanoemulsion of cashew nut shell liquid bio-waste: mosquito larvicidal activity and insights on possible mode of action. S Afr J Bot. 2019;127:293-300. https://doi.org/10.1016/j.sajb.2019.10.006
  37. 37. Bhatia B, Amarnath N, Rastogi SK, Lochab B. Isolation of cardanol fractions from cashew nutshell liquid (CNSL): a sustainable approach. Sustainable Chem. 2024;5(2):68-80. https://doi.org/10.3390/suschem5020006
  38. 38. Yeom HJ, Kang JS, Kim GH, Park IK. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J Agric Food Chem. 2012;60(29):7194-203. https://doi.org/10.1021/jf302009w
  39. 39. Almeida M, Bezerra T, Lima N, Sousa A, Trevisan M, Ribeiro V. Cardol-derived organophosphorothioates as inhibitors of acetylcholinesterase for dengue vector control. J Braz Chem Soc. 2019;30:1-9. https://doi.org/10.21577/0103-5053.20190181
  40. 40. Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet. 2023;14. https://doi.org/10.3389/fgene.2023.1183659
  41. 41. Kaynar H, Meral M, Turhan H, Keles M, Celik G, Akcay F. Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett. 2005;227(2):133-9. https://doi.org/10.1016/j.canlet.2004.12.005
  42. 42. Gusti A, Qusti S, Alshammari E, Toraih E, Fawzy M. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. Antioxidants. 2021;10(4):595. https://doi.org/10.3390/antiox10040595
  43. 43. Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew nut shell liquid (CNSL) as a source of drugs for Alzheimer’s disease. Molecules. 2021;26(18):5441. https://doi.org/10.3390/molecules26185441
  44. 44. Babatunde SF, Musa AK. Effect of Tasmanian blue gum (Eucalyptus globulus Labill.) leaf extract on cowpea weevil (Callosobruchus maculatus [Fabricius, 1775], Coleoptera: Chrysomelidae). Acta Agric Slov. 2020;116(2):351-6. https://doi.org/10.14720/aas.2020.116.2.1689
  45. 45. Matias R, Rosa AC, Oliveira AKM, Pereira KCL, Rizzi ES, Machado AA. Cashew nut shell liquid and formulation: toxicity during the germination of lettuce, tomato seeds and coffee senna and seedling formation. Acta Sci Agron. 2017;39(4):487-95. https://doi.org/10.4025/actasciagron.v39i4.32603

Downloads

Download data is not yet available.